

Department of Mechanical Engineering

P-23 Curriculum

(Sandwich Pattern)

Semester-IV

(Course Contents)

(2023-24)

GOVERNMENT POLYTECHNIC, MUMBAI (Academically Autonomous Institute, Government of Maharashtra)

Programme: Diploma in Mechanical Engineering (Sandwich Pattern)

	g and Assessment 1 Of Programme			-		0					0										With Ef	fect Fro			r : 2023-24 16 Weeks
	r: Fourth																								heme : P23
							. .	6.1									Assesm	ent Schen	ne						
						Learning Scheme						Based on LL & TL				Based on Self									
Sr. No.	Course Code	Course Title	Course	Total IKS Hrs for	Ac	tual Con	tact	.		Credits	Paper			Theory					Practical			Learning			
51.140.	Course Coue	Course rule	Туре	Sem	1	Hrs/Wee	k	Self Learning	Notional Lerning Hrs	creatis	Duration	FA	-TH	SA-TH	То	otal	FA	-PR	SA	-PR	SA	-OR	SI	LA	Total Marks
					CL	TL	LL	(TW + Assignment)	/ Week		(hrs.)	T1	T2	Max	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	1
					CL	n.		g,				Max	Max	Max	Max	Milli	19143	1VIII	Max		Max	with	19143		
1	ME23111	Materials Technology	DSC	2	3	-	2	1	6	3	2 Hrs 30Min	20	20	60	100	40	25	10	25#	10	-	-	25	10	175
2	ME23112	Power Engineering	DSC	1	3	-	2	1	6	3	2 Hrs 30Min	20	20	60	100	40	25	10	-	-	-	-	25	10	150
3	ME23113	Manufacturing Processes	DSC	2	3	-	2	1	6	3	2 Hrs 30Min	20	20	60	100	40	25	10	25#	10	-	-	25	10	175
4	ME23114	Industrial Engineering & Management	DSC	1	3	-	2	1	6	3	2 Hrs 30Min	20	20	60	100	40	25	-	-	-	-	-	25	10	175
5	ME23601	Solid Modelling	SEC			-	4	-	4	2	-	-	-	-	-	-	25	10	25#	10	-	-	-	-	50
6	ME23502	Emerging Trends in Mechanical engineering	AEC		2	-	-	2	4	2	-	-	-	-	-	-			-	-	-	-	50	20	50
7	SL23503	Entreprenuership Development (MOOC)	AEC			-	-	2	2	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8	Electiv	ve-I (Core Technology)																							
	ME23201	Automobile Engineering	DSE	1	4	-	2	-	6	3	2 Hrs 30Min	20	20	60	100	40	25	10	-	-	-	-	-	-	125
	ME23202	Industrial Maintenance	DSE	1	4	-	2	-	6	3	2 Hrs 30Min	20	20	60	100	40	25	10	-	-	-	-	-	-	125
		Total		7	18		14	8	40	20		100	100	300	500	200	150		75				150		900
Abbrevia	tions : CL-Classroo	om Learning, TL-Tutorial Learning, LL- Lab	oratory Lear	ning, FA-For	mative As	ssessment	SA-Sum	mative Assess	nent, IKS-India	n Knowled	ge System, SL	• A-Self Lea	- rning Asse	ssment					•		•			•	
Note :		nts two class tests of 20 marks each conducte																							
	2. If candidate is	not securing minimum passing marks in FA-	PR of any c	ourse then the	candidat	te shall be	declared	as "Detained"	in that semeste	r.															
	If candidate is	not securing minimum passing marks in SLA	A of any cou	rse then candi	idate shal	l be decla	red as fai	l & will have to	repeat & resul	omit SLA w	ork.														
		ning hours for the semester are (CL+LL+TL-	+SL)hrs.*15	Weeks																					
		valent to 30 Notional hrs.																							
Course Ca	0	hours shall not be reflected in the TimeTable	e.																						
course ca	seery.	Discipline Specific Course (DSC): 4, I	Discipline Sn	ecific Elective	e (DSE): 1	2, Value I	Education	Course(VEC):	1, Intern./App	enti./Proiect	./ Communitv(NP): 0. Al	bility Enha	ncement Co	ourse (AF	C) : 2. Ski	ll Enhance	ment Cours	e (SEC) :	1, Inter Dis	ciplinerv	Elective	(IE):0		
	•	• • • • • • • • •			. /			. /		2									. /						

Coordinator Curriculum Development Cell Head of Department Department of Mechanical Engineering

In-Charge Curriculum Development Cell

Programme : Diploma in Mechanical Engineering (Sandwich Pattern)

Course Code: ME23111

Course Title: Materials Technology

Compulsory / Optional: Compulsory

Learning Scheme and Credits					Assessment Scheme								
			FA-TH SA- TH		S		Α						
CL	TL	LL	SLH	NLH	Credits	T1	T2	(2Hrs 30mi ns.)	FA- PR	PR	OR	SLA	Total
3	-	2	1	6	3	20	20	60	25	25#	-	25	175

Total IKS hrs. for course: 1

Abbreviations: CL- Class Room Learning, TL- Tutorial Learning, LL- Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, SLA- Self Learning Assessment Legends: @ Internal Assessment, # External Assessment, *# On Line Examination, @\$ Internal Online Examination Note:

- 1. FA-TH represents total TWO class tests of 20 marks each conducted during the term.
- 2. SA-TH represents End term exam of 60 marks.
- 3. FA-PR represents Term work of 25 marks.
- 4. SLA represents self-learning assessment.

I. Rationale

Engineering industry consumes variety of engineering materials, metals as well as non-metals. Mechanical Engineering Technicians require to know the understanding of various materials with respect to their structure, properties and behavior. While working in different domains of Mechanical Engineering, technicians shall possess the competence to select appropriate materials for required application from the array of conventional ferrous and non-ferrous materials as well the advanced materials, productively.

In this context, the mechanical engineering diploma student must be well versed with steels, cast irons, nonferrous materials, composites and other advanced materials. Also the student is required to have hands- on learning experience on some destructive and non-destructive testing methods.

Hence it is apt to study this course with the objective to develop the competency of selection of appropriate material for required applications and material testing

II. Industry / Employer Expected Outcome:

Apply industrial engineering concepts, and managerial skills in industry.

III. Course Outcomes: Students will be able to achieve & demonstrate the following COs on completion of coursebased learning-

04									
CO1	Apply basics of material crystal structures and mechanical properties of materials for required								
	applications in material selection and perform optical metallography.								
CO2	terpret Iron and Iron Carbide Equilibrium Diagram and correlate microstructure of steels and cast irons								
	with it								
CO3	Describe characteristics of composite materials, and other advanced materials and select them for								
	appropriate applications								
N	1 = 1 + (ME22111) + (A + LC) + (D + 2) + (D + 2)								

Materials Technology (*ME23111*)

CO4	Interpret characteristics, compositions and microstructures of non-ferrous materials and Identify ceramics
	for their proper selection for applications
CO5	Compare, select and perform various heat treatments on steels and CI
CO6	Describe and perform destructive, non-destructive tests on materials

IV.Course Content Details:

Unit No.	urse Content Details: Theory Learning Outcomes (TLO's) aligned to CO's.	Topics / Sub-topics
1	TLO 1.1 Interpret the crystal structure of specified materials TLO 1.2 Identify microstructure of the given material with justification. TLO 1.3 Explain with sketches the procedure to prepare a given sample.	 Materials Structures, Mechanical Properties and Metallography 1.1 Classification of engineering materials, Mechanical properties of materials and their importance in material selection, crystal structures, unit cells, crystal parameters Average number of atoms, atomic packing factors for SC, BCC, FCC and HCP crystal cells, Theoretical Density Calculation, defects in crystal structures & their significance 1.2 *Metallography: Procedure of metallographic sample preparation for optical microscopy, etchants and etching action for two phase alloys, Principle of optical metallurgical microscope, its parts, magnification, concept of grain, grain boundary. [*This subtopic shall be taught in Lab] Course Outcome: CO1 Teaching Hours:05 Marks: 08
	SI	Course Outcome: CO1 Teaching Hours:05 Marks: 08 (R-2, U-3, A-3)
2	TLO 2.1 Identify & Interpret the given equilibrium diagram & reactions with justification. TLO 2.2 Identify the given fields of steels on Iron carbon diagrams with justification. TLO 2.3 Select relevant steel for the given application with justification. TLO 2.4 Select the relevant cast irons as white, gray cast iron for the given job with justification. TLO 2.5 Interpret the given material designations. TLO 2.6 Identify the properties of the given composition of cast iron with justification.	 Ferrous Materials 2.1 Basic terminology: Definitions: Equilibrium diagram, phases, variables, components of equilibrium diagram, solid solution, types of solid solutions, alloys, Lever rule, Iron- Iron Carbide Equilibrium Diagram with details of phases 2.2 Plain Carbon Steels: Classification of steels based on carbon contents, their Cooling, microstructures, Applications of plain carbon steels 2.3 Specifications of steels: IS, AISI, EN systems 2.4 Cast Irons: Comparison of steels and cast irons, Classification of Cast Irons and form of carbon into them, factors influencing microstructures of cast irons, white cast irons, malleable cast iron, grey cast iron, nodular cast iron, Compacted Graphite Cast Iron, ADI, properties and applications of these cast irons Course Outcome: CO2 Teaching Hours: 09 Marks: 12 (R-2, U-4, A-6)
3	TLO 3.1 Describe the properties and applications of the given alloy steels. TLO 3.2 Describe the properties	 Alloy Steels & Advanced Materials 3.1 Need of alloy steels, Limitations of Plain Carbon Steels, effects of alloying elements 3.2 Maraging steel, HSLA steel, creep resistant steel, High temperature

Industrial Engineering & Management (ME23114)

Government Polytechnic. Mumbai

	ment Polytechnic, Mumbai	Department of Mechanical Engineering						
Unit No.	Theory Learning Outcomes (TLO's) aligned to CO's.	Topics / Sub-topics						
	and applications of the given advanced material TLO 3.3 Select relevant non- ferrous material for the specified application with justification	 alloys, Low expansion steels 3.3 HSS- types & composition, Stainless steels: Types, composition and applications 3.4 Advanced Materials: Composite Materials- Definition, Need & advantages, Classification, PMC, MMC, CMC, nano composites, constituents, rue of mixture and applications, Processing of composites, Concept and behavior and applications of Shape Memory Alloys & Self-healing materials Course Outcome: CO3 Teaching Hours:08 Marks:12 						
		Course Outcome: CO3Teaching Hours:08Marks:12(R-2, U-4, A-6)						
4	TLO 4.1 Describe the properties and applications of the given copper alloy & aluminium alloy. TLO 4.2 Describe the properties and applications of the given bearing material TLO 4.3 Select relevant non- ferrous material for the specified application with justification TLO 4.4 Select relevant ceramic material for the given job with justification. TLO 4.5 Suggest relevant alternative materials for the given job with justification.	 Nonferrous Materials & Ceramics 4.1 Need of nonferrous materials, Properties, compositions and applications of Copper and its alloys: Cartridge brass, Muntz metal, season cracking of brasses, Aluminium bronze, Tin bronze, silicon bronze, Phospher bronze 4.2 Aluminium & its alloys: Properties, compositions and applications, LM5, LM6, LM14 4.3 Lead and Tin based sliding bearing materials (Babbits) 4.4 Ceramic Materials: Types and Applications of ceramics- Glass, Glass ceramics, Refractories, Abrasives, Advanced ceramics Course Outcome: CO4 (R-2, U-3, A-3) 						
5	TLO 5.1 Describe with sketches the specified heat treatment processes. TLO 5.2 Select the relevant heat treatment processes for given material with justification. TLO 5.3 Explain with sketches the working principle of the given heat treatment furnace. TLO 5.4 Suggest the relevant heat treatment process for the given situation with justification	 Heat Treatments 5.1 Objectives of heat treatments, cooling media, cooling stages, Martensitic transformation, retained austenite, its effects, 5.2 Heat Treatment Processes: Annealing: Conventional annealing, isothermal annealing, Spherodise annealing, Normalizing, Hardening: Conventional hardening, Martensitic Transformation, Tempering: Objectives, types, Process of tempering, Surface Hardening: Carburising, nitriding, Induction hardening, flame hardening, Heat Treatments for Cast Irons, Hardenability, Pollution & environmental issues related with heat treatments Course Outcome:CO5 Teaching Hours:09 Marks:12 (R-2, U-5, A-5) 						
6	TLO 6.1 Choose a relevant hardness tester based on the given situation with justification. TLO 6.2 Study Various Destructive and Non-Destructive Testing.	Testing of Materials6.1 Destructive Testing: Objectives & Procedures of Hardness Measurement: Brinell & Rockwell Method, Objectives & Procedures of Fatigue testing, Objectives & Procedures of wear testing, creep testing6.2 Non-Destructive Testing: Objectives, Procedure, advantages and limitations of Dye Penetration Test, Magnetic Particle Test, Ultrasonic Crack Detection Test, Radiography Tests, Eddy current TestCourse Outcome: CO6Teaching Hours:08Marks:08(R-2, U-3, A-3)						

(Approved Copy)

V. Laboratory Learning Outcome and Aligned Practical / Tutorial Experiences.

Sr No	Laboratory Learning Outcome (LLO) aligned to CO's.	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
1	LLO 1.1 Use optical metallurgical microscope to observe given sample.LLO 1.1 Use slitting machine to prepare sample of given dimension. LLO 1.2 Use grinding machine & polishing papers to prepare surface of given sample	Preparation of Metallographic Sample	4	CO1
2	LLO 2.1 Use suitable etchant for microscopic examination of given sample. LLO 2.2 Use a metallurgical microscope to observe micro structure of given specimen. LLO 2.3 Interpret the micro structure of given specimen.	Interpretation of microstructures of various steels	2	CO2
3	LLO 3.1 Use a metallurgical microscope LLO 3.2 Interpret the microstructure of Cast Iron.	Interpretation of microstructures of various Cast Irons	2	CO2
4	LLO 4.1 Identify SMA behaviour of given sample	Interpretation of SMA behavior	2	CO3
5	LLO 5.1 Use a metallurgical microscope LLO 5.2 Interpret the microstructure of nonferrous materials.	Interpretation of microstructures of various nonferrous materials	2	CO4
6	LLO 6.1 Identify the component. LLO 6.2 Study performance of heat treatment on steel sample	Performance of heat treatment on steel sample	4	CO5
7	LLO 7.1 Use Brinell Hardness tester LLO 7.2 Use a Rockwell Hardness tester. LLO 7.3 Determine hardness of given sample.	Hardness Measurement by Brinell Hardness Method and Rockwell Hardness Method	4	CO6
8	LLO 9.1 Identify given sample LLO 9.2 Enlist various resources required. LLO 9.3 Evaluation of hardenability of steel by Jominy End Quench Test	Evaluation of hardenability of steel by Jominy End Quench Test	2	CO5
9	LLO 9.1 Identify given sample	Performance of Dye Penetration Test	4	CO6

Industrial Engineering & Management (ME23114)

Government Polytechnic, Mumbai

Department of Mechanical Engineering

Sr No	Laboratory Learning Outcome (LLO) aligned to CO's.	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
	LLO 9.2 Enlist various resources required.			
	LLO 9.3 Perform ultrasonic dry detection test			
	LLO 9.1 Identify given sample	Performance of Magnetic Particles Test	2	CO6
10	LLO 9.2 Enlist various resources required.			
	LLO 9.3 Perform magnetic particles test			
	LLO 9.1 Identify given sample	Performance of creep Test	2	CO6
11	LLO 9.2 Enlist various resources required.			
	LLO 9.3 Perform creep test	ODIVITEO		

VI. Suggested activities for specific learning(self learning): Students will prepare the report for the following activities/task assigned to them.

- 1. Assignment on ultrasonic flaw detection Test
- 2. Assignment on mechanical properties and metallography.
- 3. Assignment on ferrous materials.
- 4. Assignment on non ferrous materials.
- 5. Assignment on heat treatment .

VII. Table:

Unit	Topic Title	Distribution of Theory Marks				
No	Topic Title WOWLEDGE	R Level	U Level	A Level		
1	Materials Structures, Mechanical Properties and Metallography	2	4	2		
2	Ferrous Materials	4	4	4		
3	Alloy Steels & Advanced Materials	2	6	4		
4	Nonferrous Materials & Ceramics	2	4	2		
5	Heat Treatments	2	6	4		
6	Testing of Materials	2	2	4		
	Total	16	24	20		

1960

VIII. Assessment Methodologies/Tools

A) Formative assessment (Assessment for Learning)

Each experiment/ assignment to be assessed on following rubrics (10 marks)

Neatness, completeness	Understanding & timely completion	Attendance & Regularity	Total
04 Marks	04 Marks	02 Marks	10 Marks

CONTRACTOR OF

B) Summative Assessment (Assessment of Learning)

End term Theory examination of 60 marks.

Suggested COs - POs Matrix Form

CO' s		Programme Outcomes (PO's)								
	PO-1 Basic and Disciplin e Specific Knowled ge	PO-2 Proble m Analy sis	PO-3 Design/ Developme nt of Solutions	PO-4 Engine ering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Manag ement	PO-7 Life Lon g Learning	PSO- 1	PSO-2	
CO1	3	1	3	1.21	2	2	3	1	3	
CO2	3	2	12	2	2	2	3	2	3	
CO3	3	2		2	2	2	3	2	3	
CO4	3	2	-	~KAvc	2	3	3	2	3	
CO5	3	2	-			3	3	2	3	
CO6	3	2	-	-	2	3	3	2	3	
Legen	ds: - High:0	3, Mediur	n:02, Low:01, I	No Mappin	g:					

IX. Suggested Learning Materials / Books

Sr.	Title	Author, Publisher, Edition and	ISBN
No.		Year Of publication	
1	Material Science and	Dr. V. D. Kodgire, S.V. Kodgire, Everest Publishing	978-8176-3140-
	Metallurgy for Engineers	House, 44 th Ed; 2018	08
2	Materials Science and	William D Callister Jr, David G Rethwisch, Wiley,	978-1118-3245-
	Engineering, Introduction	9 th Ed, 2014	78
3	Physical Metallurgy for	Donald S. Clark, Wilbur R. Varney, CBS Publishers	978-8123-9117-
	Engineers	& Distributors, 3 rd Edition, 2004	86

Government Polytechnic, Mumbai

Department of Mechanical Engineering

0070	initial i orgiectutic, muniour	Department of meentanear Engineering				
4	A Text Book of Materials	S. B. Barve, Vipul Prakashan, 1 st Ed, 2014	978-9382-7916-			
	Technology		14			
5	Self-Healing Materials: Principles and Technology	George Wypych, Chemtec Publishing, 1 st Ed, 2017	978-1927-8852- 39			

X. Learning Websites & Portals

Sr.No	Link / Portal	Description
1	https://depts.washington.edu/matseed/mse_resources/Webpage/M etals/metalstructure.htm	Metal structure
2	https://www.kemet.co.uk/blog/metallography/what-is- metallography_	Metallography
3	https://web.utk.edu/~prack/MSE%20300/FeC.pdf_	Iron Carbide diagram
4	https://www.youtube.com/watch?v=AH3ekqeiyZo	Mechanical properties of materials
5	https://www.youtube.com/watch?v=AH3ekqeiyZo	Mechanical properties of materials
6	https://www.youtube.com/watch?v=fc8zrgYJCJw	Mechanical properties of materials
7	https://www.youtube.com/watch?v=UuHofNW40Yw	Mechanical properties of materials

XI. Academic Consultation Committee/Industry Consultation Committee:

Sr. No	Name	Designation	Institute/Organization		
1	Mr. Chetan Waje	General Manager	Auto Health care , Nashik		
2	Mr. Kiran Dhande	Lecturer in Mechanical Engineering	Government Polytechnic, Chatrapati Sambaji nagar		
3	Dr. V.U. Rathod	Lecturer in Mechanical Engineering	Government Polytechnic, Mumbai		
4	Mrs. A. N. Naik	Lecturer in Mechanical Engineering	Government Polytechnic, Mumbai		

Coordinator, Department of Mechanical Engineering Head of Department Department of Mechanical Engineering

I/C, Curriculum Development Cell

Principal

(Approved Copy)

Programme : Diploma	in Mechanical Engineering	(Sandwich Pattern)
		()

Course Code: ME23112

Course Title: Power Engineering.

Compulsory / Optional: Compulsory

Learning Scheme and Credits					Assessment Scheme								
CL	TL	LL	SLH	NLH	Credits	FA-TH SA-TH		FA-	SA		SLA	Total	
		LL		5111			T1	T2	(2Hrs. 30mins.)	PR	PR	OR	SLA
3		2	1	6	3	20	20	60	25			25	150

Total IKS Hrs. for course: 01 Hour.

Abbreviations: CL- Classroom Learning, TL- Tutorial Learning, LL- Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, SLA- Self Learning Assessment

Legends: @ Internal Assessment, # External Assessment, *# On Line Examination, @\$ Internal Online Examination

Note:

1. FA-PR represents Term work of 25 Marks.

I. Rationale: Power producing and absorbing devices are essentials for mechanical engineering. It is necessary for technologists to analyze working and monitor the performance of devices like internal combustion engines, air compressors, gas turbines and steam turbines. This knowledge is also useful in selecting suitable prime mover for given application and to maintain and test the same. The diploma holders in Mechanical Engineering are responsible for supervising and maintenance of Refrigeration& Air Conditioning systems. For this purpose, the knowledge and skill covering basic principles of refrigeration and air conditioning is required to be imparted to the students, which play a vital role in maintaining controlled atmosphere in different domestic and industrial applications.

II. Industry / Employer Expected Outcome:

To study the basic concepts of Engineering Thermodynamics and subsequently understand working of all the heat exchanging devices and be able to handle them securely and confidently.

III. Course Outcomes: Students will be able to achieve & demonstrate the following COs on completion of course based learning.

CO1	Identify different components I.C. Engine.
CO2	Test the performance of I.C. engine.
CO3	Maintain reciprocating air compressors.
CO4	Identify different components of gas turbine and jet engines.
CO5	Test the performance of refrigeration and air-conditioning systems.
CO6	Make basic calculation of psychometric properties and processes.

IV. Course Content Details:

 Unit-1: Internal Combustion Engines 1.1 Internal Combustion Engines: Assumptions made in air standard cycle, Brief description of Carnot, Otto and Diesel cycles with P-V and T-S diagrams, classification of I.C. engines, neat sketch of I.C. engine indicating component parts, Function of each part and materials used for the component parts - Cylinder, crank case, crank pin, crank, crank shaft, connecting rod, wrist pin, piston, cylinder heads, exhaust valve, inlet valve, Working of four-stroke and two-stroke petrol and diesel engines, Comparison of two stroke and four stroke engines; Comparison of C.I. and S.I. engines, Valve timing diagrams for four stroke engine. 1.2 Engine Systems: Fuel supply system of Petrol engines: Principle of operation of simple carburetor. Fuel supply system of Diesel engines: Types of injectors and fuel pumps, cooling system- air cooling, water cooling system.; Ignition systems – Battery coil ignition and magneto ignition (description and working). Types of lubricating systems used in I.C. Engine.
ing Hours : 08 Marks: 10
 Unit-2: Testing of IC Engines. 2.1 Performance of I.C. Engines: Brake power; Indicated power; Frictional power; Brake and Indicated mean effective pressures; Brake and Indicated thermal efficiencies; Mechanical efficiency; Relative efficiency; Performance test; Morse test; Heat balance sheet; Methods of determination of B.P., I.P. and F.P., Simple numerical problems on performance of I.C. engines. 2.2 Concept of pollutants in S.I. and C.I. engines, pollution control norms for two and four wheelers, BS4 and BS6. Engine Control Unit (ECU): working and diagnosis procedure.

Power Engineering (ME23112)

Page

(P23 Scheme)

3	 3.1explain with sketches working of the given compressor 3.2Explain the procedure to calculate the performance parameters of the given compressor 3.3Recommend the type of compressor for the given applications with justification 3.4 State the procedure to undertake routine maintenance of the given type of air compressor. 	 Unit-3: Air Compressors 3.1Functions of air compressor – uses of compressed air, types of air compressors, Construction and working of Single stage and two stage reciprocating air compressor, necessity of multistage compression, intercooling, Safety measures for handling high pressure air, representation of processes involved on PV diagram, calculation of work done. 3.2 Testing of reciprocating air compressors: Pressure ratio, compressor capacity, FAD, volumetric efficiency, isothermal efficiency, numerical. Methods of energy saving. 3.3 Introduction to Rotary compressors.
Course	e Outcome : CO3 Learnin	ng Hours : 07 Marks: 10
4	 4.1Explain with sketches working of the given type of gas turbine 4.2Identify different components of the given engine with justification 4.3Explain with sketches the working of given rocket propulsion system 4.4 State the procedure to undertake routine maintenance of the given gas turbine 4.5State the procedure to undertake maintenance of the given gas turbine 	Unit-4: Gas Turbines and Jet Propulsion 4.1 Types of gas turbine: Classification, open cycle gas turbine and closed cycle gas turbine, PV and TS diagram and working of gas turbine. Brayton cycle, comparison of gas turbines with reciprocating IC engines, applications and limitations of gas turbine. 4.2 Jet Propulsion: Principle of operation of turbojet, turboprop, ram-jet engine, application of jet engines 4.3 Rocket propulsion: liquid and solid propellant systems, rocket fuels.
Course		ng Hours : 06 Marks: 08
5	 5.1 Sketch Carnot cycle and vapor compression cycle with the given type of P-V, T-S, P-H diagram 5.2 Calculate COP of paper compression cycle for the given and tell you values next choose the refrigerant based on properties for given application with justification 5.3 Explain with sketches construction and working of the given components of 	 Unit-5: Introduction to Refrigeration 5.1 Vapor compression cycle; Representation of the vapor compression cycle on P-H, T-S & P-V Diagram; Refrigerating effect, work done and power required; Effects of super heating and sub cooling, Simple Vapor absorptions cycle. Simple problems on vapor compression cycle. 5.2 Refrigerants: Introduction to refrigerants; Desirable Properties of refrigerants; comparison of refrigerants in domestic refrigeration systems like R12, R22, & R134a with reference to their properties. 5.3 Detection of refrigerants leakage; Charging the system with refrigerant; Lubricants used in refrigeration and their properties.

	vapor compression system 5.4 Select component of the given refrigeration systems using ASHRAE handbook with justification	5.4 Refrigerant flow controls: Capillary tube; Automatic expansion valve; Thermo- static expansion valve.5.6 Application of refrigeration: Cold storage, Dairy refrigeration, Ice making industry, Water coolers.			
Course	e Outcome : CO5 Learnin	ng Hours : 08 Marks: 12			
6	 6.1 Determine the given property of the given air using psychrometric chart 6.2 Explain with sketches construction and working of the given refrigeration and air conditioner 6.3 State the procedure to undertake routine maintenance of the given type of air compressor. 	conditioning; specific humidity, relative humidity, degree of saturation, DBT, WBT, DPT, sensible heat, latent heat, total			
Course	Course Outcome : CO6 Learning Hours : 08 Marks: 10				

V. Laboratory Learning Outcome and Aligned Practical / Tutorial Experiences.

Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr. No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
Assemble/dismantle 4 stroke petrol or diesel engine.	1	Assemble/dismantle 4 stroke petrol or diesel engine.	04	CO1
Assemble/dismantle 2 stroke petrol or diesel engine.	2	Assemble/dismantle 2 stroke petrol or diesel engine.	04	CO1
Perform test on the given I.C. Engine to prepare heat balance sheet.	3	Perform test on the given I.C. Engine to prepare heat balance sheet.	04	CO2
Perform test on the two stage reciprocating air compressor to find volumetric and isothermal efficiency.	4	Perform test on the two stage reciprocating air compressor to find volumetric and isothermal efficiency.	04	CO3
Demonstration on gas turbine model.	5	Demonstration on gas turbine model.	02	CO4
Demonstration on vapor compression refrigeration cycle.	6	Demonstration on vapor compression refrigeration cycle.	04	CO5

Demonstration and working of split type and window type air-conditioner.	7	Demonstration and working of split type and window type air- conditioner.	04	CO6
Visit to an ice plant or cold storage plant or central air conditioning plant.	8	Visit to an ice plant or cold storage plant or central air conditioning plant.(If possible)	04	CO5,CO6
		Total	30	

VI. Suggested Micro Project / Assignment/ Activities for Specific Learning / Skills Development (Self Learning):

Only one micro project is planned to be undertaken by a student that needs to be assigned to him or her in the beginning of the semester. it should be preferably being individually undertaken to build up the skill and confidence in every student to become problem solver so that he or she con tributes to the projects of the industry. in special situation where groups have to be formed for micro projects the number of students in the group should not exceed three.

The micro project could be industry application based, internet based, workshop based laboratory based or field based. Each micro project should in compass two or more COs which are in fact, and integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. the total duration of the micro project should not be less than 15 student engagement hours during the course. The student ought to submit micro project by the end of the semester to develop the industry oriented COs. A suggestive list of micro projects is given here, however similar micro projects could be added or given to the students by the concern faculty:

- 1. Display various components of MPFI system on wooden board with labels.
- 2. Take sample of cooling load calculation sheet list the components of cooling load along with percentage contribution of different loads in a refrigeration or air conditioning.
- 3. Display various parts of a hermetically sealed or open compressor on wooden board with labels
- 4. Collect and display different gasket required for single cylinder and multi cylinder I.C. engine
- 5. Prepare report on different types of lubricating oils, oil filters and coolants for petrol engines w.r.t. physical and chemical properties, cost, safety, disposal etc.
- 6. Make a working model of air compressor.

- Prepare a step by step procedure for dismantling and assembly of multi cylinder I.C. engine tabulate different tools used in dismantling of I.C. engines against components for which these tools are used.
- 8. Comparative study of hybrid vehicles, electric vehicle and conventional vehicles.
- 9. Collect working and constructional details of different types of reciprocating and rotary compressors.
- 10. Collect specifications working and constructional details of different types of refrigeration and air conditioning units.
- 11. Prepare detail report on automobile emissions by visiting nearby PUC testing center. (With reference to standard referred research papers)
- 12. Prepare a report on Impact of Global Warming. (With reference to standard referred research papers)

Unit	R Jack	Distribution of Theory Marks					
No	Topic Title	R Level	U Level	A Level	Total Marks		
1	Internal Combustion Engines	4	2	4	10		
2	Testing of IC Engines	2	4	4	10		
3	Air Compressors	2 0	4	4	10		
4	Gas Turbines and Jet Propulsion	4	2	02	08		
5	Introduction to Refrigeration	2	4	06	12		
6	Air conditioning	2	4	4	10		
	Total	16	16	28	60		

VII. Suggested Specifications Table (Theory):

VIII. Assessment Methodologies/Tools:

Formative assessment (Assessment for Learning)

Each Experiment/ assignment to be assessed on following rubrics (10 marks)

Attendance & Regularity	Technical Understanding & Interpretation of given experiment/assignment/model.	Presentation & completion	Total
02 Marks	04 Marks	04 Marks	10 Marks

Summative Assessment (Assessment of Learning)

TH - Term End examination of 60 Marks duration 2 hours 30 mins.

IX. References/ Books:

Sr. No.	Title	Author, Publisher, Edition and Year of publication	ISBN
1	Internal combustion engines	Mathur M.I., Sharma R.P. Dhanpatrai publication (P)Ltd, New Delhi 2012	1234567144047 9788189928469,
2	Thermal Engineering	Rajput R.K Laxmi publications New Delhi Edition -9,2010	8131808041, 9788131808047
3	A Textbook of Internal Combustion Engines	Rajput R.K, Laxmi publications , Third edition, New Delhi 2016	13: 978-8131800669
4	IC Engines combustion and Emissions	Pundir B.P Narosa Publishing house, New Delhi(2010)	13:978-8184870879
5	Refrigeration and Air Conditioning	Khurmi R.S; Gupta J.K. S. Chand publication , New Delhi(2016)	978-81-219-2781-9
6	Thermal Engineering	Singh Sadhu, Pati Sukumar, Pearson Education: First edition, New Delhi (2018)	13:978-935286687
7	Engineering Thermodynamics	PK Nag; Tata McGraw Hill, Delhi. Edition 4, 2008.	0-07-026062-1
8	Engineering Thermodynamics	CP Arora; Tata McGraw Hill, Delhi. Edition 1, 2001.	0-07-462014-2
9	Internal Combustion Engines	V. Ganesan; McGraw Hill Education, 4 th Edition,(2017)	978-1259006197
10	A Course in Thermal Engineering	Domkundwar , Kothandaraman, Dhanpat Rai & Co. (P) Limited	

X.E-References:

- 1. https://swayam.gov.in/
- 2. <u>www.youtube.com</u>
- 3. https://learnengineering.org/
- 4. https://nptel.ac.in/

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	3	3	2	1	1	1	1	2	1
CO2	2	2	1	1	1	1	1	2	2
CO3	3	2	2	2	1	1	1	2	3
CO4	3	3	3	2	2	1	1	2	3
CO5	3	3	3	2	2	1	1	2	3
CO6	3	3	3	2	2	1	1	2	3

XI.CO Vs PO and CO Vs PSO Mapping:

XII.Industry Consultation Committee:

Sr. No	Name	Designation	Institute/Organisation
1	Prof. Dr. Celestino Ruivo	Professor	University of Algarve-Portugal.
2	Dr. Ram Deshmukh	Lecturer In Mechanical Engg.	Cusrow Wadia Institute of Technology, Pune.
3	Dr. Vishal D. Chaudhari	Lecturer In Mechanical Engg.	Cusrow Wadia Institute of Technology, Pune.
4	Mr. Sanjay Yelge	Sr. Manager	Thyssenkruup Industries, Pimpri, Pune.
5	Dr. S. G. Taji	HOD (Mechanical)	G.P.Mumbai
6	Mr. E. C. Dhembare	LME,	G.P.Mumbai

OWTER

Coordinator, Curriculum Development, Department of Head of Department
Department of _____

I/C, Curriculum Development Cell

Principal

Power Engineering (ME23112)

		J	Program	nme: Di	iploma in	Mechan	nical E	ngineer	ring (Sandv	vich Pat	ttern)		
Cour	se Cod	le: M	E23113			Course	e Title	: Manu	facturing P	rocess			
Com	pulsor	y / Op	otional:	Compu	lsory								
	Teaching Scheme and Credits Examination Scheme												
					-	FA-7	ГН	SA-	No. of Concession, Name	S.	A	SL	
CL	TL	LL	SLH	NLH	Credits	T1	T2	TH	FA- PR	PR	OR	A	Total
3	-	2	1	5	3	20	20	60	25	25#		25	175

Total IKS hrs. for course: 2

Abbreviations: CL- Class Room Learning, TL- Tutorial Learning, LL- Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, SLA- Self Learning Assessment

Legends: @ Internal Assessment, # External Assessment, *# Online Examination, @\$ Internal Online Examination

Note:

- 1. FA-TH represents total TWO class tests of 20 marks each conducted during the term.
- 2. SA-TH represents End term exam of 60 marks.
- 3. FA-PR represents Term work of 25 marks.
- 4. SLA represents self-learning assessment.

Rationale

The diploma mechanical engineer must be exposed to basic manufacturing processes. This course will help the student to get familiarized with working principle and operation like turning, drilling, milling, casting, and joining processes. Knowledge of these processes will help them to select most appropriate process for the desired results in terms of getting raw material converted in to finish product. Diploma engineers frequently encounter diverse manufacturing processes. This course aims to enhance student's comprehension of manufacturing methods, like turning, drilling, milling, grinding, casting and joining.

Industry / Employer Expected Outcome: Produce a given component using various manufacturing processes.
Course Outcomes: Students will be able to achieve & demonstrate the following COs on completion of course-based learning-

CO1	Describe basic foundry procedures.
CO2	Describe construction of lathe machine and produce a part on lathe machine as per given drawing.
CO3	Describe construction of drilling machine and produce a part on drilling machine as per given
	drawing.
CO4	Describe construction of milling machine and produce a part on milling machine as per given
	drawing.
CO5	Describe construction of grinding machine and produce a part on grinding machine as per given
	drawing.
CO6	Describe joining processes and produce a job as per given drawing.

Course Content Details:

	se Content Details:	
Unit	Theory Learning Outcomes	Topics / Sub-topics
No.	(TLO's) aligned to CO's.	
1	 1.1 Describe significance of pattern allowances & colour coding. 1.2 Describe sand moulding process. 1.3 Describe different casting process. 1.4 Enumerate Safety practices in foundry shop. 	 Foundry Practices 1.1 Pattern making: -Pattern materials, types of patterns, pattern allowances, colour coding, 1.2 Moulding: Moulding sands, types and properties of sands, moulding tools and equipment, elements of sand moulds. 1.3 Casting: Casting in Indus valley civilization (IKS), Permanent mould casting- Gravity & Pressure Die casting, defects in castings and remedies, 1.4 Safety practices/ precautions in foundry shop. COURSE OUTCOME: CO1 TEACHING HOURS :07 MARKS: 10 (R-4, U-4, A-2)
2	 2.1 Describe construction & specification of lathe machine. 2.2 List various operations performed on lathe machine. 2.3 Describe nomenclature of single point cutting tool. 2.4 Enumerate Safety 	 Lathe Machine 2.1. Introduction, working principle of turning. 2.2. Classification of lathe machine, parts & functions of Centre lathe, specification of Centre lathe. 2.3. Lathe operations: turning, taper turning, facing, parting off, knurling, thread cutting, drilling, boring. Lathe machining parameters-speed, feed & depth of cut. 2.4. Single point cutting tool geometry, 2.5. Safety precautions while working on lathe. 2.6. Basic maintenance practices-cleaning, greasing & oiling of machine.
	practices in turning shop.	COURSE OUTCOME: CO2 TEACHING HOURS :08 MARKS: 10 (R-2, U-4, A-4)
3	 3.1. Describe parts, their functions & specification of drilling machine. 3.2. List various operations performed on drilling machine. 3.3. Describe nomenclature of twist drill. 3.4. Enlist safety practices while using drilling machine. 	 Drilling Machine 3.1. Introduction, working principle of drilling 3.2. Classification of drilling machine, parts & functions of sensitive drilling machine, specification of sensitive drilling machine. 3.3. Drilling operations: drilling, reaming, boaring & counter boaring, counter sinking and spot facing. Drilling process parameters-speed, feed & depth of cut. 3.4. Twist drill nomenclature, 3.5. Safety precautions while working on drilling machine 3.6. Basic maintenance practices-cleaning, greasing & oiling of machine. COURSE OUTCOME: CO3 TEACHING HOURS :07 MARKS: 10 (R-4, U-4, A-2)

Manufacturing Processes (ME23113)

(Approved Copy)

Government Polytechnic, Mumbai

Department of Mechanical Engineering

	ment Polytechnic, Mumbai	Department of Mechanical Engineering
Unit No	Theory Learning Outcomes	Topics / Sub-topics
No.	(TLO's) aligned to CO's.	
4	 4.1. Describe parts, their functions & specification of milling machine 4.2. List various operations performed on milling machine. 4.3. Describe simple indexing method using dividing head 4.4. Enumerate safety practices while working on milling machines 	 Milling Machine 4.1. Introduction, working principle of milling. 4.2. Classification of milling machine, parts & functions of column & knee type milling machine, specification of column & knee type milling machine. 4.3. Milling operations: up milling & down milling, plain milling, face milling, side milling, end milling, straddle milling, gang milling, Milling process parameters-speed, feed & depth of cut. 4.4. Milling Cutters: types and applications. 4.5. Gear cutting: Indexing, dividing head, simple indexing. 4.6. Safety precautions while working on Milling machine 4.7. Basic maintenance practices-cleaning, greasing & oiling of machine. COURSE OUTCOME: CO4 TEACHING HOURS :08 MARKS: 10 (R-2, U-4, A-4)
	C 100 (100 (100 (100 (100 (100 (100 (100	Grinding Machine
5	 5.1 Describe construction & specification of surface grinding machine. 5.2 List various operation performed on surface grinding machine. 5.3 Describe the construction of grinding wheel. 5.4 Describe the significance of dressing & truing. 	 5.1. Introduction, working principle of grinding. 5.2. Classification of grinding machine, parts & functions of horizontal surface grinding machine, specification of horizontal surface grinding machine. 5.3. Grinding operations: Surface grinding, cylindrical grinding & tool grinding. Grinding process parameters-speed, feed & depth of cut. 5.4. Grinding wheel: abrasives, bonds, grits, grade, structure, standard marking systems. Dressing & truing of grinding wheel. 5.5. Safety precautions while working on grinding machine 5.6. Basic maintenance practices- cleaning, greasing & oiling of machine. COURSE OUTCOME: CO5 TEACHING HOURS :07 MARKS: 10 (R-4, U-4, A-2)
	THE MEL	Joining Processes
6	 6.1 Describe the classification of welding processes. 6.2 Describe gas welding process 6.3 Differentiate various arc welding processes. 	 6.1. Introduction, working principle of Welding 6.2. Welding and weldability, classification of welding processes. 6.3. Gas welding: gas welding equipment, oxy-acetylene welding, types of flame. 6.4. Arc welding: arc welding equipment, shielded metal arc welding, TIG and MIG welding. 6.5. Soldering and brazing process, fillers, merits, demerits and
	6.4 Compare soldering and brazing process.6.5 List causes of welding defects and suggest remedies.	 applications, comparison. 6.6. Defects in welded joints causes and remedies. 6.7. Safety practices/ precautions in welding shop. COURSE OUTCOME: CO6 TEACHING HOURS :07 MARKS: 10 (R-4, U-4, A-2)

Manufacturing Processes (ME23113)

(Approved Copy)

(P-23 scheme)

Unit No.	Theory Learning Outcomes (TLO's) aligned to CO's.	Topics / Sub-topics
	6.6 Enumerate safety guidelines and precautions for a welding shop	

Laboratory Learning Outcome and Aligned Practical / Tutorial Experiences.

Sr No	Laboratory Learning Outcome (LLO) aligned to CO's.	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs	
1	LLO 1.1 Setup a lathe machine for given job as per operations. LLO 1.2 Select suitable cutting parameters for operations as per given job. LLO 1.3 Prepare a turning job as per given drawing.	Produce a job on a lathe machine that comprises facing, plain turning and step turning operations as per the given drawing.	02	CO2	
2	LLO 2.1 Setup a lathe machine for taper turning operations. LLO 2.2 Calculate taper angle for taper turning operations as per given job. LLO 2.3 Prepare a taper turning job as per given drawing.	Produce a job on a lathe machine that comprises taper turning and grooving operations as per the given drawing.	04	CO2	
3	LLO 3.1 Setup a lathe machine for chamfering and knurling operations. LLO 3.2 Select suitable cutting parameters for chamfering and knurling operations. LLO 3.3 Prepare a chamfering and knurling job as per given drawing.	Produce a job on a lathe machine that comprises knurling and chamfering operations as per the given drawing.	02	CO2	
4	LLO 4.1 Setup a lathe machine for threading operation. LLO 4.2 Select suitable cutting parameters for threading operation. LLO 4.3 Prepare a threading job as per given drawing.	Produce a job on a lathe machine that comprises threading operations as per the given drawing.	04	CO2	
5	LLO 5.1 Setup a drilling	Produce a job on a drilling machine comprising drilling operations as per	02	CO3	

Manufacturing Processes (ME23113)

(Approved Copy)

(P-23 scheme)

Government Polytechnic, Mumbai

Department of Mechanical Engineering

Sr	Laboratory Learning Outcome	Laboratory Experiment /	Number	Relevant
No	(LLO) aligned to CO's.	Practical Titles / Tutorial Titles	of hrs.	COs
	machine for given job as per operations.	the given drawing on flat surface/ cylindrical surfaces.		
	LLO 5.2 Prepare a drilling job as per given drawing.			
	LLO 6.1 Setup a milling machine and cutter for given job.	Produce a spur gear using indexing		
6	LLO 6.2 Use dividing head for indexing	mechanism as per the given drawing.	06	CO4
	LLO 6.3 Prepare a spur gear on milling machine as per the given drawing.		6	N
7	LLO 7.1 Setup a surface grinding machine. LLO 7.2 Prepare a grinding job as per given drawing	Produce a job using surface grinder as per the given drawing.	02	CO5
	LLO 8.3 Prepare material for fabricating a job.		- 1	
8	LLO 8.4 Select suitable equipment and tool for welding.	Fabricate a job using arc welding machine as per given drawing.	04	C06
	LLO 8.5 Fabricate job as per given drawing			
9	LLO 9.1 Prepare joint for soldering/brazing by applying flux. LLO 9.2 Perform soldering/brazing operations on the given components	Perform soldering / brazing operations on the given components.	02	CO6
	LLO 10.1 Identify type of pattern and its material		1200	
	LLO 10.2 Enumerate tools used to prepare sand mould.			
10	LLO 10.3 Identify type of casting method followed	Industrial visit/video demonstration to observe foundry practices/casting	02	CO1
	LLO 10.4 Identify the product being manufactured	processes followed by industries.	1	
	LLO 10.5 Enlist the safety practices followed in foundry shop			

Suggested Micro Project / Activities for Specific Learning / Skills Development (Self Learning):Manufacturing Processes (ME23113)(Approved Copy)(P-23 scheme)

- Visit a small scale unit/fabrication shops and prepare a report.
- Visit a two wheeler /four wheeler servicing/repairing shop and prepare a report.
- Prepare model of Single point cutting tool using suitable material.
- Prepare model of Twist drill/ Milling cutter/ parts of Lathe machine/ drill machine/ milling machine/ grinding machine using suitable material
- Observe the video on manufacturing of engineering component by casting method, and prepare a report.

I. Specification Table:

Unit		Distribution of Theory Marks				
No	Topic Title	R Level	U Level	A Level		
1	Foundry Practices	4	4	2		
2	Lathe Machine	2	4	4		
3	Drilling Machine	2	4	4		
4	Milling Machine	2	4	4		
5	Grinding Machine	2	4	4		
6	Joining Processes	2	4	4		
	Total	14	24	22		

Assessment Methodologies/Tools

A)Formative assessment (Assessment for Learning)

Each experiment/ assignment to be assessed on following rubrics (10 marks)

Job drawing, tool handling & safety precautions	Job quality, accuracy & timely completion of job	Attendance & Regularity	Total	
04 Marks	04 Marks	02 Marks	10 Marks	

B) Summative Assessment (Assessment of Learning)

End term Theory examination of 60 marks.

End term practical examination of 25 marks. (TWO hrs.)

Suggested COs - POs Matrix Form

Manufacturing Processes (ME23113)

(Approved Copy)

(P-23 scheme)

CO'			Prog	ramme Out	comes (PO's)			PSO)'s
S	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Developme nt of Solutions	PO-4 Engineeri ng Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO- 1	PSO- 2
CO1	3	1		1	2	10 A 10	01	01	03
CO2	3	2	1.1	3	2	2	3	2	3
CO3	3	2		3	2	2	3	2	3
CO4	3	2	11-	3	2	2	3	2	3
CO5	3	2	10	3	2	2	3	2	3
CO6	3	2		3	2	2	3	2	3
Legen	nds: - High:0	3, Mediur	n:02, Low:01	l, No Mapp	ing:			(

II. Suggested Learning Materials / Books

Sr. No.	Title	Author, Publisher, Edition and Year Of publication	ISBN
1	Elements Of Workshop	S K Hajra Choudhury, A K Hajra Choudhury, Nirjhar	13
	Technology Vol-1	Roy, Media Propoters & Publisher PVT. LMT.	5551234102415
2	Elements Of Workshop	S K Hajra Choudhury, A K Hajra Choudhury, Nirjhar	978-8-185-
	Technology Vol-2	Roy, Media Propoters & Publisher PVT. LMT.	09915-6.
3	Manufacturing Technology	P N RAO, McGraw Hill, New Delhi.	9781259062575
	Vol-1		1100
4	Manufacturing Technology	P N RAO, McGraw Hill, New Delhi.	9789353160524
	Vol-2		8 a. 1
5	Ancient Metal Technology and Archaeology of South Asia: a Pan-Asian perspective	D.P. Agrawal, Aditya Prakashan, New Delhi	9788173051777

Learning Websites & Portals

Sr.No	Link / Portal	Description
1	https://www.youtube.com/watch?v=Wc2gpWcmGK4	Lathe Machine Operations
2	https://www.youtube.com/watch?v=DGsV6RhBnbM	Radial drilling machine
3	https://www.youtube.com/watch?v=zzXdddrV2so	Simple Job on milling machine
4	https://www.youtube.com/watch?v=2CIcvB72dmk	Basics of Metal Casting
5	https://www.youtube.com/watch?v=-w7E88zox6w	Closed die forging

Manufacturing Processes (ME23113) (A)

(Approved Copy)

(P-23 scheme)

6	https://www.youtube.com/watch?v=RyLvVMg84xs	Basics of welding process
7	www.nptel.ac.in/courses	

III. Academic Consultation Committee/Industry Consultation Committee:

Sr. No	Name	Designation	Institute/Organization
1	Dr. H P Khairnar	Assistant Professor	V.J.T.I., Matunga, Mumbai-19
2	Amol S. Dhande	Lecturer in Mechanical Engineering	Government Polytechnic, Ratnagiri
3	Dr. V.U. Rathod	Lecturer in Mechanical Engineering	Government Polytechnic, Mumbai
4	Mr. S. B. Bidgar	Lecturer in Mechanical Engineering	Government Polytechnic, Mumbai

Coordinator, Department of Mechanical Engineering Head of Department Department of Mechanical Engineering

I/C, Curriculum Development Cell

Principal

	Programme: Diploma in Mechanical Engineering /Rubber Technology (Sandwich Pattern)											
Cours	Course Code: ME23114				Cour	se Titl	e: Industr	rial Engir	neering	& Man	agement	
Compulsory / Optional: Compulsory												
	Теа	ching Sch	neme and	Credits		Examination Scheme						
				1000		FA-	TH	SA-	FA-	S	Α	
CL	TL	LL	SLH	NLH	Credits	T1	T2	ТН	PR	PR	OR	SLA
3	-	2	1	6	3	20	20	60	25	\geq	-	25

Total IKS hrs. for course: 1

Abbreviations: CL- Class Room Learning, TL- Tutorial Learning, LL- Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SLA- Self Learning Assessment

Legends: @ Internal Assessment, # External Assessment, *# On Line Examination, @\$ Internal Online Examination

Note:

1. FA-TH represents total TWO class tests of 20 marks each conducted during the term.

- 2. SA-TH represents End term exam of 60 marks.
- 3. FA-PR represents Term work of 25 marks.
- 4. SLA represents self-learning assessment.

Rationale

The diploma mechanical engineer has to utilize the available resources like men, materials, machines, methods of manufacturing etc. for better productivity by eliminating wastefulness in production processes. This needs measurement of methods, and work i.e. method study and time study. Industrial engineering parts of this course help students to apply industrial engineering concepts to maximize the efficiency of a plant by best use of man, machine, materials etc. Engineers working in an industry have to manage the various resources for smooth functioning of industry. Management part of this course introduces management principles, managerial skills, safety aspects, and industrial acts to engineer.

Industry / Employer Expected Outcome:

Apply industrial engineering concepts, and managerial skills in industry.

Course Outcomes: Students will be able to achieve & demonstrate the following COs on completion of course-based learning-

CO1	Prepare job sequence over the machines by applying industrial engineering concepts.
CO2	Apply work study and time study techniques to optimize manufacturing processes.
CO3	Apply ergonomic principles for designing simple mechanical work station.
CO4	Apply Management Concept and Managerial Skills
CO5	Manage different industrial resources efficiently.
CO6	Interpret different Industrial Safety norms and Industrial Acts

Course Content Details:

Unit	Theory Learning Outcomes	Topics / Sub-topics
No.	(TLO's) aligned to CO's.	
1	 1.1 Describe Needs and Objectives of Industrial Engineering. 1.2 Describe methods of improving productivity. 1.3 Enlist the principles of plant layout design. 1.4 Prepare detail sequence of operation for manufacturing the given component. 	 Process Engineering 1.1 Industrial Engineering: Definition, Needs and Objectives. 1.2 Production: concept, Types of Production, Batch production, Job Production and Continuous production system, and their comparison. 1.3 Productivity: Definition, Labour productivity, Material productivity and Machine productivity. Methods of improving productivity. 1.4 Plant Layout: Objectives, Types of plant layout, Principles of plant layout design, Factors affecting plant layout, Symptoms of bad plant layout. 1.5 Production Planning and Control (PPC): Definition, Functions of PPC, Operation routing, Job Sequencing (n jobs and 2 machines), Line balancing (simple numerical), Gantt chart Course Outcome: CO1 Teaching Hours: 9 Marks: 12
		(R-4, U-4, A-4)
2	 2.1 Perform method study for manufacturing of given component. 2.2 Prepare relevant charts using recording techniques. 2.3 Perform time study for manufacturing of given component. 2.4 Calculate standard time for the given activity using work measurement. 	 Method Study, Time Study & Motion Study 2.1 Method Study (Work Study): Definition and objectives of method study, Procedure of method study, Selection of work for method study. Therbligs 2.2 Charting Techniques: Outline process chart, Flow process chart, Flow diagram, Travel chart, Two handed process chart, String diagram. 2.3 Time Study (Work Measurement): Definition and objectives of time study. Procedure, Equipment required to conduct time study, 2.4 Factors affecting rate of work, Types of elements, Rating and allowances, 2.5 Calculation of standard time. Course Outcome:CO2 Teaching Hours: 10 Marks:14 (R-4, U-6, A-4)
3	 3.1 Apply ergonomics concept to improve working conditions in the given industrial environment. 3.2 Apply ergonomic principles to the given component. 	 Ergonomics 3.1 Ergonomics: Concept, need, Man-machine relationship, anthropometric and functional anatomy of data. 3.2 Ergonomics in design of control members-push button, knobs, levers, crank , hand wheel 3.3 Ergonomic considerations applied to types and location of display. Course Outcome:CO3 Teaching Hours:06 Marks:06 (R-2, U-2, A-2)

Government Polytechnic, Mumbai

Department of Mechanical Engineering

	ment Polytechnic, Mumbai	Department of Mechanical Engineering
Unit	Theory Learning Outcomes	Topics / Sub-topics
No.	(TLO's) aligned to CO's.	
4	4.1 Describe Principles of Management4.2 Enumerate Managerial skills.	 Management Concept and Managerial Skills 4.1 Management: Definition, role and importance of management, 4.2 Principles of Management, levels of management and their functions. 4.3 Organization, Management, Administration, relation between administration and management. 4.4 Managerial skills COURSE OUTCOME: CO4 TEACHING HOURS :08 MARKS: 10 (R-2, U-4, A-4)
5	 5.1 Understand the significance of Industrial Resource Management. 5.2 Describe objectives of personnel management. 5.3 Describe objectives of materials management. 5.4 Describe objectives of financial management. 	 Industrial Resource Management 5.1 Personnel Management: Need, objectives, functions of personal management, Training and development. 5.2 Materials Management: Definition of Inventory, inventory control, objectives of inventory control, ABC analysis. 5.3 Financial Management: Need, objectives, functions, Types and sources of capital, Budgets and account, Balance sheet, Element of costing. COURSE OUTCOME: CO5 TEACHING HOURS :06 MARKS: 10 (R-2, U-4, A-4)
6	 6.1 Describe General safety norms for industrial unit. 6.2 Interpret various industrial acts. 	 Industrial Safety and Industrial Acts 6.1 Need of safety measures 6.2 General safety norms for industrial unit 6.3 Accident: Definition, types of industrial accidents, general cause of accidents. 6.4 Industrial Acts : Indian Factories Act, Industrial Dispute Act, Workman Compensation Act, Minimum wages Act. Labour CODE. COURSE OUTCOME: CO6 TEACHING HOURS :06 MARKS: 08 (R-2, U-4, A-2)

Laboratory Learning Outcome and Aligned Practical / Tutorial Experiences.

Sr No	Laboratory Learning Outcome (LLO) aligned to CO's.	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
1	LLO 1.1 Prepare the drawing of a component LLO 1.2 Enlist the operations to be performed to manufacture the given job. LLO 1.3 Prepare process plan.	Prepare detailed process plan for manufacturing of hexagonal nut/Hexagonal headed bolt/stud/plain washer/given component	04	CO1
2	LLO 2.1 Prepare the drawing of a component LLO 2.2 Enlist the operations to be performed to manufacture the given job. LLO 2.3 Prepare chart of sequence of operation.	Prepare chart of sequence of operation for manufacturing of hexagonal nut/Hexagonal headed bolt/stud/plain washer/given component	02	CO1
3	LLO 3.1 Prepare the drawing of a component. LLO 3.2 Enlist the operations to be performed to manufacture the given job. LLO 3.3 Analyse the motions involved in machining operations of the given job.	Apply the method study approach to analyse the motions involved in machining operations of the given job.	02	CO2
4	LLO 4.1 Prepare the drawing of a component. LLO 4.2 Enlist the operations to be performed to manufacture the given job. LLO 4.3 Measure time components involved in machining operation of a given job.	Apply work measurement technique to analyse the time components involved in machining operation of a given job using stop watch.	04	CO2
5	LLO 5.1 Prepare the drawing of a component. LLO 5.2 calculate the time components to perform operations to manufacture the given job. LLO 5.3 Calculate standard	Calculate the standard time for all the operations involved in step turning process.	02	CO2

Industrial Engineering & Management (ME23114)

Government Polytechnic, Mumbai

Department of Mechanical Engineering

Sr	<i>nment Polytechnic, Mumbai</i> Laboratory Learning Outcome	Department of Laboratory Experiment /	Number		
No	(LLO) aligned to CO's.	Practical Titles / Tutorial Titles	of hrs.	COs	
	time to perform operations to manufacture the given job.				
6	LLO 6.1 Identify the activity to be performed. LLO 6.2 Enlist the therbligs required LLO 6.3 Prepare motion chart of given activity using therbligs symbols.	Prepare motion chart of given activity using standard symbols of therbligs	02	CO3	
7	LLO 7.1 Identify the component. LLO 7.2 Apply ergonomic principle for given component	Use ergonomic principle for given component	02	CO3	
8	LLO8.3Identifyorganization.Identify type ofLLO8.4identify type ofmanagement.LLO8.5Enlistthefunctions of key posts.	Identify any one organization, and describe how it is managed /administered. Enlist the functions of key posts.	04	C04	
9	LLO 9.1 Identify organization. LLO 9.2 Enlist various resources required. LLO 9.3 Identify how various resources are managed.	Identify any one organization, and describe how various resources are managed in it.	04	CO5	
10	LLO 10.1 Identify general safety norms to be followed in industrial unit LLO 10.2 Enumerate key features of Indian Factories Act. LLO 10.3 Enumerate key features of Industrial Dispute Act LLO 10.4 Enumerate key features of Workman Compensation Act LLO 10.5 Enumerate key features of Minimum wages Act.	Describe general safety norms to be followed in industrial unit, and key features of Indian Factories Act, Industrial Dispute Act, Workman Compensation Act, Minimum wages Act.	04	CO6	

I. Suggested Self Learning: Students will prepare the report for the following activities/task assigned to them.

- 1. Prepare detailed process plan for manufacturing of given component.
- 2. Prepare chart of sequence of operation for manufacturing of given component
- 3. Apply the method study approach to analyse the motions involved in machining operations of the given job.
- 4. Apply work measurement technique to analyse the time components involved in machining operation of a given job using stop watch.
- 5. Calculate the standard time for all the operations involved to perform operations on given job.
- 6. Prepare motion chart of given activity using standard symbols of therbligs.
- 7. Collect ergonomic data for given domestic/office items or control panels of 2 wheeler/ 4 wheeler.
- 8. Identify any one organization, and describe how it is managed /administered. Enlist the functions of key posts.
- 9. Collect information about general safety norms followed in industries.
- 10. Collect information about Indian Factories Act, Industrial Dispute Act, Workman Compensation Act, Minimum wages Act.

II. Specification Table:

Unit		Distributi	Distribution of Theory Marks				
No	Topic Title	R Level	U Level	A Level			
1	Process Engineering	4	4	4			
2	Method Study & Time Study	4	6	4			
3	Ergonomics	2	2	2			
4	Management Concept and Managerial Skills	2	4	4			
5	Industrial Resource Management	2	4	4			
6	Industrial Safety and Industrial Acts	2	4	2			
	Total	16	24	20			

Assessment Methodologies/Tools

A) Formative assessment (Assessment for Learning)

Each experiment/ assignment to be assessed on following rubrics (10 marks)

Neatness , completeness			Total
04 Marks	04 Marks	02 Marks	10 Marks

B) Summative Assessment (Assessment of Learning)

Industrial Engineering & Management (ME23114)

End term Theory examination of 60 marks.

CO'			0	Programr utcomes (F				PSO	PSO's	
S	PO-1 Basic and Discipline Specific Knowled ge	PO-2 Proble m Analys is	PO-3 Design/ Development of Solutions	PO-4 Enginee ring Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Manage ment	PO-7 Life Lon g Learning	PSO- 1	PSO- 2	
CO1	3	1	10-	1	2	2	3	1	3	
CO2	3	2		2	2	2	3	2	3	
CO3	3	2		2	2	2	3	2	3	
CO4	3	2		2 - Sa	2	3	3	2	3	
CO5	3	2		-	2	3	3	2	3	
CO6	3	2	-	-	2	3	3	2	3	
Leger	nds: - High:	03, Medi	ium:02, Low:0	1, No Ma	pping:		1		10.1	

III. Suggested Learning Materials / Books

Sr. No.	Title	Author, Publisher, Edition and Year Of publication	ISBN
1	Industrial Engineering And Management	O.P. Khanna, Dhanpat Rai,	ISBN-10 818992835X
2	Industrial Engineering and Production Management	Martand T Telsang, S Chand	ISBN-13. 978- 8121917735
3	Ergonomics at Work: Human Factors in Design and Development	D.J.Oborne John Wiley & Sons Ltd, 3rd Edition - 23 January 1995.	ISBN-13: 978- 0471952350 ISB N-10: 9780471952350.
4	Principles of management	Omvir Chaudhary, Prakash singh. New Delhi New age international (P) Ltd. 2011.	isbn 978 81 224 3039 4
5	Industrial Organization And Management	Sahu, K. C., Basu, S.K., Rajiv b., phi	• ISBN-10 8120344219

Learning Websites & Portals

Sr.No Link / Portal	Description	
Industrial Engineering & Management (ME23114)	(Approved Copy)	(P-23 scheme)

1 www.nptel.ac.in/courses

IV. Academic Consultation Committee/Industry Consultation Committee:

Sr.	Name	Designation	Institute/Organization
No			
1	Dr S.G. Jadhav	Assistant Professor	V.J.T.I., Matunga, Mumbai-19
2	Mr. C. R. Khaire	Lecturer in Mechanical Engineering	K.J. S. P., Vidyavihar, Mumbai
3	Dr. V.U. Rathod	Lecturer in Mechanical Engineering	Government Polytechnic, Mumbai
4	Mr. S. B. Bidgar	Lecturer in Mechanical Engineering	Government Polytechnic, Mumbai

Coordinator, Department of Mechanical Engineering Head of Department Department of Mechanical Engineering

I/C, Curriculum Development Cell

Principal

Progra	Programme : Diploma in Mechanical Engineering (Sandwich Pattern)												
Course Code: ME23601 Course					Course 7	se Title: Solid Modeling							
Comp	Compulsory / Optional: Compulsory												
	Teac	hing Sche	eme and	Credits				Ех	aminatio	n Scher	ne		
	T			N 17 1 7	a u		SA-TH	FA-	S	A		Total	
CL	TL	LL	SLH	NLH	Credits	T1	T2	(2 Hrs 30 min.)	PR	PR	OR	SLA	
_		4	-	4	2	_	_	_	25	25#		_	50

Total IKS Hrs. for course: Nil

Abbreviations: CL- Classroom Learning, TL- Tutorial Learning, LL- Laboratory Learning, SLH- Self Learning Hours, NLH- Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, SLA- Self Learning Assessment Legends: @ Internal Assessment, # External Assessment, *# Online Examination, @\$ Internal Online Examination Note:

1. FA-PR represents Term work of 25 Marks

2. SA-PR represents Summative assessment of 25 Marks

Rationale

The global engineering and manufacturing industries are heavily reliant on state-of-the-art design and manufacturing technologies. Companies are increasingly looking for professionals who are proficient in using high-end CAD and CAM tools. Solid modeling is an essential skill for creating precise, realistic 3D representations of parts and assemblies. Integrating CAD (for design) and CAM (for manufacturing) ensures that students can go from conceptual design directly to production with minimal errors.

The field of engineering design and manufacturing has witnessed a remarkable transformation with the advent of advanced computer-aided design (CAD) and computer-aided manufacturing (CAM) technologies. These tools have become indispensable in various industries, including automotive, aerospace, industrial design, and consumer electronics. The subject of **Solid Modeling**, incorporating high-end CAD software and CAM integration, is crucial for providing students with a comprehensive understanding of the modern design and manufacturing process. This rationale outlines the significance of this subject in the context of contemporary engineering education and industry practices.

Industry / Employer Expected Outcome

To be proficient in using high-end CAD software tools and become aware of using CAM software tools used in various engineering sectors to become capable of quickly transitioning into professional roles without requiring extensive training on CAD software, thereby reducing on boarding time and improving productivity from the outset.

Course Outcomes: Students will be able to achieve & demonstrate the following COs on completion of course:

(Approved Copy)

CO1	Create and Constraint 2D sketches			
CO2	Generate 3D models of machine components			
CO3	Prepare assembly of 3D modelled components.			
CO4	Create 3D surface models			
CO5	Generate orthographic views/ drawings of models / assemblies.			
CO6	Simulate tool path and create NC files			

Course Content Details:

Unit No.	Laboratory Learning Outcomes (LLO's) aligned to CO's.	Topics / Sub-topics
1	 1.1 Identify the applications and benefits of solid modeling in engineering design. 1.2 Navigate and utilize the user interface and navigation tools for creating 2D sketches. 1.3 Generate and modify 2D sketches with precision using advanced sketch tools. 1.4 Export and print 2D sketches in standardized formats for practical use. 	 Introduction & 2D Sketching Introduction, Need of solid modeling, Different software's for Solid Modeling, Applications, Benefits. Getting familiar with User Interface, Navigation tools, Drawing Units. Print setup, Layout preparation, Making basic sketches- rectangle, circle etc., making polygons, circular/rectangular sketch patterns, Modifying 2D sketches using trim, extend, offset etc. Geometrical constraints, Export the drawing in dxf/ dwg,/ svg,/ pdf formats , and Print /Plot the drawings
Cours	e Outcome : CO1	
2	 2.1 Construct 3D models using extrude, revolve, and sweep. 2.2 Apply Boolean operations and modification tools to refine 3D models. 2.3 Develop construction and reference planes for accurate modeling. 2.4 Design basic mechanical components with practical applications. 2.5 Export and print 3D models in various standardized formats for manufacturing. 	 3D Modeling 3D modeling using extrude, revolve, sweep, etc. 2.2 Modifying 3D models by fillet, chamfer, use of rectangular and circular patterns, move, copy etc. Boolean operation: union, subtract, intersection 2.3 Making construction /reference planes 2.4 Modeling of simple machine components, such as spur gear, 3D spanner, nut bolts, pipe Joints, couplings, brackets, tools etc. 2.5 Export model in IGES/ STEP/ STL/dxf/ dwg,/ svg,/ pdf formats, and Print /Plot the 3D models

Cou	rse Outcome : CO2	1
3	 3.1 Assemble multiple components into functional assemblies. 3.2 Implement joints and constraints to achieve desired assembly behavior. 3.3 Simulate and analyze assembly motion, creating exploded views for documentation. 3.4 Export and print assemblies using recognized formats for presentation and manufacturing. 	3.3 Assembly motion,
Com	rsa Outaama : CO3	formats & Print /Plot the Assembly
	rse Outcome : CO3	
4	4.1 Develop freeform surface modelsfor various engineeringapplications.	Surface Modeling4.1 Introduction, Creating free form surfaces
	 4.2 Design and refine surface models for real-world objects like bottles and tools. 4.3 Export and prepare surface models for printing and further use in production. 	 4.2 Creating free form surface models like water bottle, flower pot, heating iron, detergent bottle, soap case etc. 4.3 Export model IGES/ STEP/ STL/dxf/ dwg,/ svg,/ pdf formats, and Print /Plot the surface model.
Cou	rse Outcome : CO4	-
5	 5.1 Generate accurate 2D drawings derived from 3D models and assemblies. 5.2 Produce views, including sectional and isometric projections, for comprehensive documentation. 	Drafting5.1 Generate 2D drawings from 3D models5.2 Insert base view, projected views - front view, top view, side view, sectional views, isometric views, etc.5.3 Drafting of Assemblies
	5.3 Annotate dimensions and create bills of material for assembled designs.	 5.4 Dimensioning, 5.5 Bill of material/ part list for assemblies
	5.4 Export and print technical drawings for use in manufacturing and presentations.	I formate and Print /Plot the drawing of model/assemblies
Cou	rse Outcome : CO5	1
6	6.1 Configure and simulate CAM	Introduction to CAM

tools for precise machining paths.	6.1 Setup, Tool Manager, drilling tool path, 2D toolpath,
6.2 Prepare and export NC files and	simulate, post NC files
tool paths for manufacturing	6.2 3D Printing, export to STL
processes.	6.3 Print /Plot the tool path and NC files
6.3 Export/print NC files for	
production.	
Course Outcome : CO6	

Laboratory Learning Outcome and Aligned Practical / Tutorial Experiences.

Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr. No	Laboratory Experiment / Practical Titles / Tutorial Titles	Numbe r of hrs.	Releva nt CO s
LLO 1.1 Use navigating tools to	1	Introduction to Graphics User Interface,	10	CO1
create 2D sketches with constraints.		Demonstrate the use of navigating tools,	-	
LLO 1.2 Produce and print/plot at		sketching of 2D sketches and constraints.		
least four 2D sketches to demonstrate		Prepare minimum four 2D sketches and		
proficiency in 2D drafting.		printing/ plotting the drawings		
LLO 2.1 Develop 3D models from	2	Demonstrate to prepare 3D models from 2D	10	CO2
2D sketches using commands like		sketches involving use of extrude, revolve,		
extrude, revolve, and sweep.		sweep, etc. commands, and modify		
LLO 2.2 Modify and refine 3D		commands.		
models, and print/plot at least four		Prepare minimum four 3D Models of		
machine components.		machine components and printing /		
		plotting the models.		
LLO 3.1 Assemble components from	3	Demonstration of assembling the 3D models,	10	CO3
3D models and integrate motion into		establishing the motion in components of		
assemblies.		assembly.		
LLO 3.2 Print/plot the completed		Prepare an assembly from 3D modelled		
assembly to showcase functionality.		components, establish motion in assembly		
		components, and printing/plotting an		
		assembly.		
LLO 4.1 Create exploded views of	_	Demonstration of creating an exploded view	06	CO3
assemblies to visualize component	4	of an assembly.		
relationships.		Prepare exploded view of an assembly		
LLO 4.2 Print/plot the exploded		from prepared assembly and		
views to demonstrate assembly		printing/plotting exploded view of an		
understanding.		assembly.		
LLO 5.1 Design freeform surface	5	Demonstration of creating free form surfaces	06	CO4
models such as bottles or lamps	e	such as water bottle, flower pot, heating iron,		
using advanced tools.		detergent bottle, soap case, table lamp etc.		
LLO 5.2 Print/plot at least four		Prepare minimum four freeform surface		
freeform models to validate design		models and printing / plotting the surface		
capabilities.		model.		

				~~~
LLO 6.1 Generate orthographic and	6	Demonstration of creating drafting i.e. base	06	CO5
isometric views of 3D models to		view, projected views, sectional views,		
communicate design intent.		isometric views of models.		
LLO 6.2 Prepare and print/plot		Prepare the drafting of minimum four 3D		
drafting views for at least four		models and printing / plotting the		
models.		different views of 3D model.		
LLO 7.1 Produce orthographic/		Demonstration of creating drafting i.e. base		CO5
isometric views and a bill of	7	view, projected views, sectional views,	04	
materials (BoM) for assemblies.		isometric views of assembly, and bill of		
LLO 7.2 Print/plot the drafting of at		materials.		
least one assembly with a complete		Prepare the drafting of minimum one		
BoM.		assembly, bill of material (BoM), and		
		printing / plotting the different views of		
		assembly		
LLO 8.1 Select appropriate tools to		Demonstration for Computer Aided		CO6
simulate machining paths for	8	Manufacturing for machining of the given	04	
components.		component.		
LLO 8.2 Print/plot the tool paths to		Select the tool, and simulate toolpath for		
verify machining strategies.				
verify machining strategies.		machining of the modelled component,		
LLO 9.1 Develop G-codes to		and print / plot the tool path. Demonstration for Computer Aided		CO6
-	9	1	04	000
automate the machining process for		Manufacturing for machining of the given		
given components.		component.		
LLO 9.2 Print/plot the G-codes to		Generate the G codes for machining of the		
ensure accuracy in execution.		given component and print / plot the		
		codes.		

Note: All Sheets and Assignments are compulsory.

Suggested Micro Project / Assignment/ Activities for Specific Learning / Skills Development (Self Learning):

I. Specification Table: Not Applicable

#### Assessment Methodologies/Tools:

#### Formative assessment (Assessment for Learning)

Each sheet/ assignment to be assessed on following rubrics (10 marks)

Attendance & Regularity	Technical Understanding & Interpretation of given	Accuracy and pace of completion	Total		
	problem	1			
02 Marks	04 Marks	04 Marks	10 Marks		

#### Summative Assessment (Assessment of Learning)

Practical Examination: - 25 Marks external practical examination based on curriculum.

# **Suggested COs - POs Matrix Form**

			Prog	ramme Outc (POs)	omes				
Course Outcom es (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Developme nt of Solutions	PO-4 Engineerin g Tools	PO-5 Engineerin g Practices for Society, Sustainabili ty and Environme nt	PO-6 Project Manageme nt	PO-7 L if e L o n g Learni ng	PSO- 1	PSO- 2
CO1	3	1	-	2	-	-	2	1	1
CO2	3	2	3	2	1	-	2	2	2
CO3	3	3	3	3	2	2	2	3	3
CO4	3	3	3	3	2	1	2	2	2
CO5	3	3	3	3	2	3	3	3	2
CO6	3	3	3	3	2	3	2	3	2
Legend s: - High:03 , Mediu m:02, Low:01 , No Mappin g:									

# II. Suggested Learning Materials / Books

Sr.N	Author	Title	Publis
0			her
1	Fundamentals Of Cad/Cam/Cim	Dr. Vikram Sharma, International Book House (P).Ltd Delhi (1 January 2012)	ISBN-10 : 9789381335734 ISBN-13 : 978-9381335734
2	Mastering CAD/CAM	Ibrahim Zeid, McGraw-Hill Higher Education	ISBN:0072976810, 9780072976816

# III. Learning Websites & Portals

S	Link	Description
r.	/Portal	
•		
Ν		

0		
1	<u>https://www.youtube.com/watch?</u> <u>v=5aHulvtaiKw</u>	Student can go through free tutorials available related to CAD software
2	https://www.youtube.com/watch? v=M0kmFmC- kCEhhttps://www.youtube.com/watch? v=5aHulvtaiKw	Student can go through free tutorials available related to CAD software
3	https://www.youtube.com/watch? v=2XI6vPDATQ0&list=PLROUP1bV8RE QNj5I6vyydhaAUO6IdgfXU	Student can go through free tutorials available related to CAD software
4	https://www.youtube.com/watch? v=XV2KBbPCJ-A	Student can go through free tutorials available related CAD software

# IV. Academic Consultation Committee/Industry Consultation Committee:

Sr.	Name	Designation	Institute/Organization		
No					
1	Mr.D.G.Pendokhare	Lecturer in Mechanical Engineering	Government Polytechnic, Thane		
2	Mr.A.G.Joshi	Lecturer in Mechanical Engineering	Government Polytechnic, Ahmednagar		
3	Mr. G. B.Patil	Senior Lead Engineer	Stellantis India Pvt.Ltd. Pune.		
4	Mr. K. V. Patil	Sel. Grade Lecturer in Mechanical Engineering	Government Polytechnic, Mumbai		
5	Mr. E. C. Dhembare	Lecturer in Mechanical Engineering	Government Polytechnic, Mumbai		

Coordinator,	Head of Department
Curriculum Development,	Department of Mechanical Engineering
Department of Mechanical Engineering	
VC. Curriculum Development Cell	Dringing
I/C, Curriculum Development Cell	Principal

Solid Modeling (ME23601)

(Approved Copy)

Prog	Programme : Diploma in Mechanical Engineering (Sandwich Pattern)												
Course Code: ME23502 Course					ourse Title: Emerging Trends in Mechanical Engineering								
Compulsory / Optional: Compulsory													
Learning Scheme and Credits         Assessment Scheme													
						FA-	TH	SA-	FA-	S	SA		
CL	TL	LL	SLH	NLH	Credits	<b>T1</b>	T2	TH (2Hrs 30mins.)	PR	PR	OR	SLA	Total
2			2	4	2							50	50

#### Total IKS Hrs. for course: 01 Hrs

Abbreviations: CL- Classroom Learning, TL- Tutorial Learning, LL- Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SLA- Self Learning Assessment

Legends: @ Internal Assessment, # External Assessment, *# On Line Examination, @\$ Internal Online Examination

#### I. Rationale:

The field of mechanical engineering is undergoing a transformative phase, driven by rapid advancements in technology, increasing environmental concerns, and the need for sustainable development. The course "**Emerging Trends in Mechanical Engineering**" is designed to equip students with the knowledge and skills required to navigate and contribute to these evolving trends. The course focuses on cutting-edge technologies and their applications across various industries, ensuring that students are prepared to meet the demands of the modern engineering landscape.

This course equips students with skills in electric vehicles, autonomous driving, Industry **4.0** (IoT, AI, smart factories), automation, green energy (renewables, waste-to-energy), and agricultural technologies (cold chain, post-harvest systems). It bridges traditional engineering with modern innovations, preparing students to address sustainability, efficiency, and technological advancements in mobility, manufacturing, energy, and agriculture.

#### **II. Industry / Employer Expected Outcome:**

Industry employers expect graduates of this course to possess skills in integrating emerging technologies like electric vehicles, IoT, AI, and automation into manufacturing and automotive systems. Additionally, they anticipate proficiency in utilizing smart manufacturing, green energy solutions, and data-driven decision-making to enhance efficiency, sustainability, and innovation in industrial operations.

# **III.** Course Outcomes: Students will be able to achieve & demonstrate the following COs on completion of course based learning.

CO1	J J
	vehicles (EVs), autonomous driving technologies, and connected cars.
CO2	Comprehend the key principles of IoT, AI, and their role in Industry 4.0 for smart
	manufacturing and automation.
CO3	Investigate the latest advancements in manufacturing technologies such as additive
	manufacturing (4D printing), advanced robotics, and automation.
CO4	Understand the principles and technologies related to renewable energy sources like wind,
	solar, and bioenergy.
CO5	Analyze the role of advanced mechanical systems and automation in modern agriculture
	equipment for precision farming.

#### **IV. Course Content Details:**

Unit No.	Theory Learning Outcomes (TLO's) aligned toCO's.	Topics / Sub-topics
1	<ul> <li>1.1Understand the growth and role of Electric Vehicles (EVs).</li> <li>1.2Differentiate between BEVs, PHEVs, and HEVs.</li> <li>1.3Analyze market trends and adoption rates of EVs.</li> <li>1.4Evaluate challenges and opportunities in EV adoption.</li> <li>1.5Explore advancements in battery technology.</li> <li>1.6Understand levels of autonomy in vehicles and current technologies.</li> <li>1.7Identify key players and their role in autonomous driving.</li> <li>1.8Examine challenges in autonomous vehicle development.</li> </ul>	<ul> <li>Unit-1: Recent trends in automobile industry</li> <li>1.1Electrification of Vehicles</li> <li>Rise of Electric Vehicles (EVs)</li> <li>Types of EVs: BEVs, PHEVs, HEVs.</li> <li>Market adoption and growth statistics.</li> <li>Challenges and Opportunities</li> <li>Battery technology and charging infrastructure.</li> <li>Government policies and incentives.</li> <li>1.2Autonomous Driving and Connectivity</li> <li>Autonomous Vehicles (AVs)</li> <li>Levels of autonomy and current state of technology.</li> <li>Key players and pilot programs.</li> <li>Connected Cars</li> <li>IoT and vehicle-to-everything (V2X) communication.</li> <li>Enhanced safety and convenience features.</li> </ul>
2	<ul> <li>e Outcome : CO1 Learning Hou</li> <li>2.1Understand the evolution of Industry 4.0 and key technologies driving the Fourth Industrial Revolution.</li> <li>2.2Explain the fundamentals of the Internet of Things (IoT) and its applications and benefits in industrial environments.</li> <li>2.3Analyze data collection techniques and the role of</li> </ul>	<ul> <li>urs: 06</li> <li>Unit-2: IOT, AI &amp; Industry 4.0</li> <li>2.1 Introduction to Industry 4.0</li> <li>Overview of Industry 4.0</li> <li>Historical context: From Industry 1.0 to 4.0</li> <li>Key drivers of the Fourth Industrial Revolution</li> <li>Key Technologies in Industry 4.0</li> <li>2.2Internet of Things (IoT)</li> <li>IoT fundamentals</li> </ul>



 $Page\mathbf{3}$ 

	predictive analytics in improving manufacturing efficiency. 2.4Recognize AI and machine learning applications in	<ul> <li>Applications and benefits in industry</li> <li>2.3Big Data and Analytics</li> </ul>
	<ul><li>manufacturing processes and smart</li><li>factory automation.</li><li>2.5 Understand digital supply chain</li><li>management concepts and the</li><li>benefits of smart, data-driven</li></ul>	<ul> <li>Data collection and analysis techniques</li> <li>Predictive analytics in manufacturing</li> <li>2.4Artificial Intelligence and Machine Learning</li> <li>AL applications in industry</li> </ul>
	supply chains in Industry 4.0.	<ul> <li>AI applications in industry</li> <li>Use cases of machine learning in manufacturing processes</li> <li>Smart Factories and Automation</li> </ul>
	A C	<ul> <li>2.5 Supply Chains and Industry 4.0</li> <li>Digital Supply Chain Management</li> <li>Concepts and tools for digital supply chain management</li> <li>Benefits of smart supply chains</li> <li>Supply Chain Resilience - Reduce Obsolescence &amp; Material scarcity risk by providing effective &amp; efficient supply chain.</li> <li>Sustainability in SCM - Sustainable Supply Chain with its 17 SDGs.</li> <li>Productivity - Enhance Efficiency &amp; Ensure Cost competitiveness.</li> </ul>
Course	e Outcome : CO2 Learning Ho	urs : 08
3	<ul> <li>3.1Understand the components and role of automation and robotics in smart manufacturing systems.</li> <li>3.2Analyze the need for automation and its principles, strategies, and benefits in manufacturing systems.</li> <li>3.3 Identify and differentiate between types of automation: fixed, programmable, flexible, hard, and soft automation.</li> <li>3.4Explore industrial robotics, including robot anatomy, control systems, sensors, and applications, as well as 4D printing and 3D scanning technologies.</li> </ul>	<ul> <li>Unit-3: Smart Manufacturing Systems</li> <li>3.1 Smart Manufacturing Systems <ul> <li>Definition and components of smart factories</li> <li>Role of automation and robotics</li> </ul> </li> <li>3.2 automation- need. basic elements of automated systems. automation principles and strategies benefits</li> <li>3.3 types of automation. fixed, programmable, flexible, hard and soft automation</li> <li>3.4 industrial robotics- robot anatomy robot control systems and effectors, sensor in robotics, industrial robot applications</li> <li>3.4 4D printing Technology, printing techniques, 3D scanning Technology -function application.</li> </ul>
Course	e Outcome : CO3 Learning Ho	urs : 06

	4.1 Understand the immentance of	
	4.1 Understand the importance of	
	green energy and identify key	4.1 Introduction to Green Energy
	renewable energy sources like	Importance of green energy
	solar, wind, geothermal, and	Green (Renewable) energy sources: Solar, wind,
	biomass.	geothermal, hydropower, ocean, and biomass energy.
	4.2 Explore applications of	• Applications: Using renewable energy for
	renewable energy in heating,	heating, cooking, lighting, and more
	cooking, lighting, and other areas,	• Sustainability: How to reflect climate change and
	focusing on sustainability.	sustainability in the curriculum
4	4.3 Examine energy generation,	• Energy generation, distribution, and
-	distribution, and utilization	utilization: How renewable energy is created,
	processes for renewable energy	transported, and used
	sources.	• Green nanotechnology: How nanotechnology can
	4.4 Investigate the role of green	be used to create green energy
	nanotechnology, combustion	Combustion technology: How combustion
	technology, waste-to-energy	technology can be used to create green energy
	systems, and biofuels in sustainable	• Waste to energy: How waste can be turned into
	energy production.	energy
	5/3	• Biofuels: How biofuels can be created and used
	2 24	to generate energy.
Course	e Outcome : CO4 Learning Ho	urs : 06
	5.1 Understand the functions and	Unit-5: Agriculture equipment and post-harvest
	applications of agricultural	Technology
	equipment, including tillers,	5.1 Tillers: sowing and planting equipment, weeding
	sowing, weeding, spraying, and	machines, spraying machines, harvesting, post harvesting
	harvesting machines.	machines
	5.2 Examine the components and	
5		
	agriculture and post-harvest	······································
	handling.	
	5.3 Analyze the National Cooling	
	Action Plan (NCAP) and its role in	
	promoting sustainable cold storage	
	and transportation in agriculture.	
0	1 0	
Course	e Outcome : CO5 Learning Ho	urs: 04

Note: Any one unit from the above five units, has to be preferably taught by alumni of Govt. Polytechnic Mumbai.

# V. Laboratory Learning Outcome and Aligned Practical / Tutorial Experiences.: Not Applicable.

VI. Suggested Micro Project / Assignment/ Activities for Specific Learning / Skills Development (Self Learning):

Note: Student are required to complete any five micro projects from the suggested list given below. Similar micro projects could be added or given to the students by the concern faculty.

- 1. Micro project 1: Comparative Analysis of EV Types (BEVs, PHEVs, HEVs)
  - **Objective**: Compare Battery Electric Vehicles (BEVs), Plug-in Hybrid Electric Vehicles (PHEVs), and Hybrid Electric Vehicles (HEVs) in terms of performance, cost, and environmental impact.
  - **Deliverable**: A detailed comparison chart and a short report highlighting the pros and cons of each type.
  - **Tools**: Online research, case studies, and EV market reports.

#### 2. Micro project 2: Design a Charging Infrastructure Plan for a City

- **Objective**: Propose a plan for setting up EV charging stations in a city, considering factors like population density, traffic patterns, and power grid capacity.
- **Deliverable**: A map with proposed locations and a brief report justifying the plan.
- Tools: Google Maps, EV charging station data, and power grid information.
- 3. Micro project 3: IoT-Based Smart Factory Simulation
  - **Objective**: Simulate a small-scale smart factory using IoT concepts (e.g., sensors, actuators, and data flow).
  - **Deliverable**: A flowchart or block diagram showing how IoT connects machines, collects data, and enables real-time monitoring.
  - Tools: Simulation software (e.g., Tinkercad, MATLAB, or any IoT platform).
- 4. Micro project 4: Predictive Maintenance Using Machine Learning
  - **Objective**: Develop a simple predictive maintenance model using machine learning to predict equipment failure based on historical data.
  - **Deliverable**: A basic ML model (e.g., decision tree or regression) and a report explaining the approach.
  - Tools: Python (Scikit-learn), sample datasets (e.g., Kaggle).

#### 5. Micro project 5: Design a Flexible Automation System

- **Objective**: Design a flexible automation system for a small-scale manufacturing process (e.g., assembly line).
- **Deliverable**: A schematic diagram and a brief description of the system's components and functionality.
- Tools: CAD software (e.g., SolidWorks, AutoCAD) or hand-drawn sketches.

#### 6. Micro project 6: Industrial Robot Application Case Study

• **Objective**: Research and present a case study on the application of industrial robots in a specific industry (e.g., automotive, electronics).



- **Deliverable**: A presentation or report highlighting the robot's role, benefits, and challenges.
- **Tools**: Online research, industry reports, and case studies.

#### 7. Micro project 7: Design a Solar-Powered Device

- **Objective**: Design a small solar-powered device (e.g., a solar charger or light) and explain its working principle.
- **Deliverable**: A prototype design (can be a model or diagram) and a brief report on its applications.
- Tools: Solar panel kits, basic electronics components, and design software.

#### 8. Micro project 8: Waste-to-Energy Feasibility Study

- **Objective**: Conduct a feasibility study on converting waste into energy for a small community or industry.
- **Deliverable**: A report outlining the process, benefits, and challenges of waste-toenergy conversion.
- Tools: Online research, case studies, and waste management data.

#### 9. Micro project 9: Design a Post-Harvest Cooling System

- **Objective**: Design a simple cooling system for post-harvest storage of agricultural produce, considering the elements of the cold chain.
- **Deliverable**: A schematic diagram and a brief description of the system's components and functionality.
- **Tools**: CAD software or hand-drawn sketches.

#### 10. Micro project 10: Analysis of National Cooling Action Plan (NCAP)

- **Objective**: Analyze the National Cooling Action Plan (NCAP) and its impact on agriculture and post-harvest technology.
- **Deliverable**: A short report summarizing the key points of NCAP and its relevance to agriculture.
- Tools: Government documents, online research, and case studies.

#### VII. Suggested Specifications Table (Theory): Not Applicable.

#### VIII. Assessment Methodologies/Tools:

#### Formative assessment (Assessment for Learning)

Each Experiment/ assignment to be assessed on following rubrics (10 marks)

Attendance & Regularity	Technical Understanding & Interpretation of given experiment/assignment/model.	Presentation & completion	Total
02 Marks	04 Marks	04 Marks	10 Marks



#### Summative Assessment (Assessment of Learning): Not Applicable.

#### IX. References/ Books:

Sr. No.	Title	Author, Publisher, Edition and Year of publication	ISBN
1	Electric Vehicles and the end of ICE Age	Anupam Singh Publisher: Adhyyan Books Edition: 1, 2019	ISBN: 9789387502765, 9387502767
2	Industry 4.0: Technologies, Applications, and Challenges (Emerging Trends in Mechatronics)	Aydin Azizi and Reza Vetankhaha barenji Edition:1st ed. 2023	ISBN-13:978- 9811920110
3	Internet of Things (IoT)	Dr. Kamlesh Lakhwani, Dr. Hemant kumar Gianey, Joseph Kofi Wireko, Kamal Kant Hiran Edition: First Edition	ISBN-13: 978- 9389423365
4	Green Energy	River Publishers Series in Communications and Networking Editor: M. D. Tiwari & Anurika Vaish, IIIT- Allahabad, India	ISBN: 9788792329417
5	Renewable Energy Sources and Emerging Technologies	D.P. Kothari, K.C.Singal, Rakesh Ranjan Publisher : Prentice Hall India Learning Private Limited; 2nd edition (1 January 2011)	ISBN-10 : 8120344707 ISBN-13 : 978-8120344709
6	Industry 4.0: The Industrial Internet of Things		
7	Electric and Hybrid Vehicles: Technologies, Modeling, and Control	echnologies, Modeling, and and Avesta Goodarzi	
8	Industry 4.0: The Industrial Internet of Things.	by Alasdair Gilchrist	ISBN: 978- 1484220467
9	Automation, Production Systems, and Computer- Integrated Manufacturing	Mikell P. Groover	ISBN: 978- 0133499612
10	Agricultural Mechanics: Fundamentals and Applications	by Ray V. Herren	ISBN: 978- 0357028638

#### **X.E-References:**

Page 7

- 1. <u>https://youtu.be/aaOB-ErYq6Y?si=8h_-jE1DxeUQP0Gc</u>
- 2. <u>https://youtu.be/tiwVMrTLUWg?si=5KYI9q4vfvx6FXiI</u>

- 3. <u>https://youtu.be/kpW9JcWxKq0?si=i9_7xxAOrJOQDh1w</u>
- 4. <u>https://youtu.be/6mBO2vqLv38?si=C-CSTAB4gePPXq5n</u>
- 5. <u>https://youtu.be/HcqpanDadyQ?si=YfY6M54X8-f2-1Gf</u>
- 6. <u>https://youtu.be/a0_lo_GDcFw?si=VdA5AiadgubGlU_5</u>
- 7. <u>https://youtu.be/aNDSWLGTw6M?si=shoYqxQBDOZMKoK0</u>
- 8. <u>https://youtu.be/wEtH6tT9HA4?si=wRZBlogw7qt6mOZ2</u>
- 9. <u>https://youtu.be/MyK4BzbxcdU?si=a7GdTIhxb0EeIT-Q</u>
- 10. https://youtu.be/1kUE0BZtTRc?si=s09MxbP7KibeQqxD
- 11. https://youtu.be/D2-hWT5LcRg?si=xsPXum9bOZPODmHK
- 12. https://youtu.be/u8CVwxLtD14?si=0oyXshPMXlJ4MFnb

# XI.CO Vs PO and CO Vs PSO Mapping:

Course Outcomes		Programme Specific Outcomes (PSOs)							
(COs)	PO-1 Basic and Discipline Specific Knowledge		PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO- 1	PSO- 2
CO1	3	2	2	KNOWL	EDG3	2	2	2	2
CO2	2	-	1	3	3	2	3	2	2
CO3	3	2	2	3	3	3	2	3	3
CO4	3	2	2	2	3	-	1	1	1
CO5	3	3	3	3	3	2	2	3	3
Legends	Legends: - High:03, Medium:02, Low:01, No Mapping:								

Sr.	NameDesignationInstitute/Orga		Institute/Organisation
No			
1	Mr. K.B.Salunkhe	Selection Grade Lecturer in Mechanical Engineering	Government Polytechnic, Thane.
2	Dr. Shirish D.Dhobe	Selection Grade Lecturer in Mechanical Engineering	Government Polytechnic, Pune.
3	Mr.Sumedh Gamare	Chief Manager, SCM	Siemens Ltd. Mumbai.
4	Dr.S.G.Taji.	Head of Department, Mechanical Engineering	Government Polytechnic, Mumbai
5	Mr. K.V.Patil	Selection Grade Lecturer in Mechanical Engineering	Government Polytechnic, Mumbai
6	Dr.V.U.Rathod	Selection Grade Lecturer in Mechanical Engineering	Government Polytechnic, Mumbai
7	Mr.S.B.Bidgar	Selection Grade Lecturer in Mechanical Engineering	Government Polytechnic, Mumbai
8	Mr.E.C.Dhembare	Lecturer in Mechanical Engineering	Government Polytechnic, Mumbai
9	Mr.K.Z.Dhangare	Lecturer in Mechanical Engineering	Government Polytechnic, Mumbai
10	Miss.A.N.Naik	Lecturer in Mechanical Engineering	Government Polytechnic, Mumbai

#### **XII.Industry Consultation Committee:**

Coordinator,

Head of Department

196

Curriculum Development,

Department of Mechanical Engineering

Department of Mechanical Engineering

I/C, Curriculum Development Cell

Principal



Prog	Programme : Diploma in Mechanical Engineering (Sandwich Pattern)												
Course Code: ME23201 Course				Title:	Auto	mobile E	nginee	ering					
Compulsory / Optional: Optional													
Learning Scheme and Credits				its	Assessment Scheme								
						FA-TH		SA-		S	A		
CL	TL	LL	SLH	NLH	Credit s	T1	T2	TH (2Hrs 30min s.)	FA- PR	PR	OR	SLA	Total
4		2		6	3	20	20	60	25				125

#### Total IKS Hrs. for course: 01 Hrs

Abbreviations: CL- Classroom Learning, TL- Tutorial Learning, LL- Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, SLA- Self Learning Assessment

Legends: @ Internal Assessment, # External Assessment, *# On Line Examination, @\$ Internal Online Examination

Note:

#### 1. FA-PR represents Term work of 25 Marks

**I. Rationale:** Automobile sector has been helping the world for the overall development and it has been creating wage and self-employment opportunities both in public and private sectors. Mechanical engineering technologists should have an overall understanding of various aspects of automobile systems. This course provides a broad knowledge about the different vehicle layout, transmission and controls, electrical and electronics systems, vehicle safety and security, features of motor vehicle acts along with automobile maintenance with automobile maintenance systems. This knowledge will be helpful to the students in co relating various automobile systems with each other and provide good practical input with theoretical knowledge for technological advancement of the industry / society.

#### II. Industry / Employer Expected Outcome:

To study the basic concepts of Automobile Engineering and interpret the required automobile component based on the analysis of the automobile specifications.

# **III.** Course Outcomes: Students will be able to achieve & demonstrate the following COs on completion of course based learning.

CO1	repare vehicle layouts with chassis specification.		
CO2	nterpret power flow diagrams of transmission systems.		
CO3	Select suitable braking and steering systems for different application.		
CO4	Select tyres and suspension system for different applications		
CO5	Prepare simple electrical – electronics circuits for automobile systems.		
CO6	Maintain automobile air conditioning system.		

### **IV. Course Content Details:**

Unit No.	Theory Learning Outcomes (TLO's) aligned toCO's.	Topics / Sub-topics
1	<ul> <li>1.1 Identify various automobile components and their location on the given vehicle.</li> <li>1.2 Describe with sketches the function of the given part.</li> <li>1.3 Draw labelled vehicle layout of the given vehicle.</li> <li>1.4 Select relevant type of alternative fuel for the given application with justification.</li> </ul>	Unit-1: Introduction to automobiles 1.1 Automobile: definition, classification of automobiles, Major components of automobiles with their function and location. 1.2 Vehicle layout: Definition significance of Vehicle Layout. Different types of Vehicle layout (FEFWD, FERWD, RERWD, 4WD) Advantages, Disadvantages, Applications and Comparisons of different types of vehicle layout. 1.3 Function of chassis, frame, classification of chassis frame with advantages, disadvantages and applications. Basic body nomenclature. 1.4 Alternative fuels: LPG and CNG: need, fuel characteristics, advantages, limitations. Layout of electric vehicles, need, working, advantages, limitations. Hydrogen as fuel. Safety precautions while handling automobile accessories and equipment.
Cours	e Outcome : CO1 Learn	ing Hours : 10 Marks: 10
2	components of the given transmission system.	<ul> <li>Unit-2: Transmission system</li> <li>2.1 Need and Requirements of transmission system. Its components and their functions.</li> <li>2.2 Clutch: Function and working principle of clutch, types and construction of clutches such as Single plate and Multiplate type and Centrifugal clutch. Faults &amp; remedies in clutch.</li> <li>2.3 Gearbox: Necessity of gear box, Constant mesh &amp; Synchromesh gear box with their construction and operation.</li> <li>2.4 Semi-automatic transmission: Function, Construction and Working of Overdrive, Automatic Transmission, fluid flywheel: Function, Construction and Working of Fluid flywheel.</li> <li>2.4 Propeller shaft: Function, Necessity, Types, Construction and working</li> <li>2.5 Differential: need, Construction and Working, differential action and operation</li> <li>2.6 Axle: Hotchkiss and torque tube drives, rear axle-full floating axle, semi-floating and three quarter floating axle. Front axle.</li> </ul>
Cours	e Outcome : CO2 Lear	ning Hours: 12 Marks: 10
3	<ul><li>3.1 Explain with sketches the terms related to steering system.</li><li>3.2 explain with sketches the working principle of the given type of steering gearbox for</li></ul>	Unit-2: Control Systems 3.1 Steering System: Necessity, functions & types of steering system. Construction and working of Recirculating ball type and Rack and Pinion type. Steering Geometry- Caster, Camber, King pin inclination, Toe In and Toe Out, Steering axis inclination. Principle of Power steering, Construction and

 $Page\mathbf{Z}$ 

	<ul><li>the given vehicle.</li><li>3.3 Sketch the labelled layout of the given type of Braking system.</li><li>3.4 Explain with sketches the working of the given ABS.</li></ul>	<ul> <li>working of Power steering</li> <li>3.2 Braking System: Function, Need, Principle of braking system, Types of automotive braking systems, Mechanical, Hydraulic and Air operated. Hydraulic braking systems:</li> <li>Layout &amp; components of hydraulic braking Systems.</li> <li>Construction and working of Master cylinder and wheel cylinder, Tandem cylinder. Drum braking system, Disc Braking Systems, Air braking system: layout and working.</li> <li>3.4 Anti-lock braking system: Layout of ABS, Types of ABS</li> </ul>
Cours	e Outcome : CO3 Lear	ning Hours : 12 Marks: 10
4 Cours	<ul> <li>4.1 Explain the terms related to the given suspension system.</li> <li>4.2 Explain with sketches the working principle of the given type of suspension system.</li> <li>4.2 Select relevant suspension system for the given applications.</li> <li>4.3 Explain procedure, tool and equipment for wheel alignment and balancing.</li> </ul>	Unit-4: Suspension System, wheel and tyres.4.1 Suspension System: Function, Necessity and classification of suspension system, front and rear suspension system, Advantages of front wheel independent suspension system. construction and working of Wishbone type, Mac Pherson 
5	<ul> <li>5.1 Explain the given terms related to automobile electrical system.</li> <li>5.2 Explain with sketches principle of the given electrical component of the vehicle.</li> <li>5.3 Select relevant battery for the given application.</li> </ul>	<ul> <li>Unit-5: Electrical Systems.</li> <li>5.1 Ignition system: Introduction to ignition system; Battery Ignition systems and magneto</li> <li>Ignition system; Electronic Ignition system; Construction and working of lead acid battery; Elements of starting system; Types of lights used in the automobile:</li> <li>5.2 Battery: Automotive battery construction and operation, battery capacity, Battery ratings, Battery tests. Charging System: Need of charging system, Construction and operation of charging system, Dynamo, Alternator principle, construction and working</li> <li>5.3 Starting System: Need of starting system layout, Bendix and solenoid drive</li> </ul>
Cours	e Outcome : CO5 Lear	ning Hours : 08 Marks: 12
6	<ul><li>6.1 Explain the working of various components of automobile air conditioning system.</li><li>6.2 Sketch labelled layout of automobile air conditioning</li></ul>	<ul> <li>Unit-6: Automobile Air Conditioning System.</li> <li>6.1 Locate various components of air conditioning systems in a vehicle.</li> <li>6.2 Introduction, layout of car air conditioning system, components of a system, working of a system, parameter control (Humidity, temperature, purity of air) required.</li> <li>6.3 Important precautions while using AC system.</li> </ul>

 $P_{age}3$ 

**Course Outcome : CO6** 

Learning Hours: 08

#### Marks: 10

## V. Laboratory Learning Outcome and Aligned Practical / Tutorial Experiences.

Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr. No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
1.1 Draw 2 wheeler and 4 wheeler vehicle layout.	1	To draw vehicle layout. (2 wheeler and 4 wheeler)	04	CO1
2.1 Understand working and layout of transmission system	2	Demonstration of auto transmission in automobiles.	02	CO1
3.1 Dismantle / Assemble single plate clutch	3	Dismantle and assemble single plate clutch	02	CO2
4.1 Dismantle / Assemble multi plate clutch	4	Dismantle and assemble multi plate clutch	02	CO2
5.1 Dismantle / Assemble the propeller shaft assembly.	5	Dismantle and assemble the propeller shaft assembly.	02	CO2
6.1 Dismantle / Assemble synchromesh gear box or constant mesh gear box.	6	Dismantle and assemble synchromesh gear box or constant mesh gear box.	02	CO2
7.1 Dismantle / Assemble Differential gear box of automobile.	7	Dismantle and assemble Differential gear box of automobile.	02	CO2
8.1 Dismantle / Assemble the power steering system.	8	Dismantle and assemble the power steering system.	02	CO3
9.1 Dismantle brake system (drum /disk)	9141	Dismantle brake system (drum /disk) and observe various components of it. Write function of important components.	04	CO3
10.1 Dismantle / Assemble suspension system	10	Dismantle and assemble leaf spring, torsion bar, dependent & independent suspension.	02	CO4
11.1 Dismantle / Assemble the wheel and tyre assembly.	11	Dismantle and assemble the wheel and tyre assembly.	02	CO4
12.1 Inspect battery components	12	Testing of battery like Ah rating, type of battery, no. of cells, vents, charge status by using hydrometer and voltmeter.	02	CO5
1.31 Understand car AC system	13	Demonstration of car air-conditioning system.	02	CO6
		Total	30	



VI. Suggested Micro Project / Assignment/ Activities for Specific Learning / Skills Development (Self Learning):

NIL

#### VII. Suggested Specifications Table (Theory):

Unit		Distribution of Theory Marks						
No	Topic Title	R Level	U Level	A Level	Total Marks			
1	Introduction to Automobiles	4	2	4	10			
2	Transmission system	4	4	4	12			
3	Control Systems	4	4	4	12			
4	Suspension System, wheel and tyres	4	2	4	10			
5	Electrical Systems	2	2	4	08			
6	Automobile Air conditioning System	2	2	4	08			
	Total	20	16	24	60			

#### VIII. Assessment Methodologies/Tools:

#### Formative assessment (Assessment for Learning)

Each Experiment/ assignment to be assessed on following rubrics (10 marks)

Attendance & Regularity	Technical Understanding & Interpretation of given experiment/assignment/ model.	Presentation & completion	Total
02 Marks	04 Marks	04 Marks	10 Marks

#### Summative Assessment (Assessment of Learning)

TH - Term End examination of 60 Marks duration 2 hours 30 mins.

#### IX. References/ Books:

Page **D** 

Sr. No.	Title	Author, Publisher, Edition and Year of publication	ISBN
1	Automobile	Rajput R.K. Laxmi Publications Pvt. Ltd, New Delhi, 2008.	97881170089919

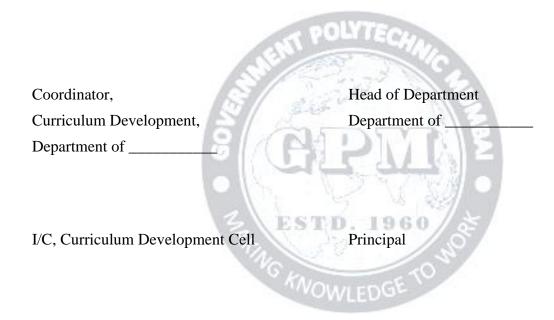
Automobile Engineering (ME23201)App	roved Copy (P23 Scheme)
-------------------------------------	-------------------------

2	Automotive Mechanics	Crouse W.H., Anglin D.W. Tata-McGraw Hill publications, Delhi(1965)	978007070148215
3	Automobile Engineering (vol. I & II)	Dr. Kirpal Singh, Standard Publishers, New Delhi.(2004)	9788180141034
4	Automobile Engineering	H. M. Sethi Tata-McGraw Hill edition -1, (2006)	9780074603901
5	Automotive Mechanics	S Shrinivasan Tata-McGraw Hill, 2nd edition (2017)	0070494916 978-0070494916
6	Automobile Engineering	T. R. Banga, Nathu Singh. Khanna publishers (2005)	8174092218 978-8174092212

#### **X.E-References:**

- 1. www.tatamotors.com
- 2. <u>www.marutisuzuki.com</u>
- 3. www.auto.howstuffworks.com
- 4. You tube videos for automobile systems

## XI.CO Vs PO and CO Vs PSO Mapping:


СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	3	3	2	2	1	1	2	1	1
CO2	2	3	2	EST	D. ¹ 19	60/	2	1	1
CO3	2	2	27	2	01	2	21	1	1
CO4	2	2	3	310	ALED(	ETO	1	1	1
CO5	2	2	2	2	1	2	1	1	1
CO6	2	3	2	1	1	1	2	1	1

Γ	Automobile	Engineering	(ME23201)
---	------------	-------------	-----------

Approved Copy

Sr.	Name	Designation	Institute/Organisation
No			
1	Mr. K.Z. Dhangare	LME	G.P.Mumbai
2	Mr. E.C.Dhembare	LME	G.P.Mumbai
3	Mr. Prashant Chavan	LME	G.P.Murtizapur
4	Mr. Kiran B Salunke	LME	G.P.Thane
5	Mr. Gautam. Patil	Manager	Mahindra and Mahindra Ltd Nashik
6	Mr. Sachin Khalkar	Manager	Mahindra and Mahindra Ltd Nashik

#### **XII.Industry Consultation Committee:**



Page /

Prog	Programme : Diploma in Mechanical Engineering (Sandwich Pattern)												
Course Code: ME23202 Course					Course	Title:	Indu	strial Ma	intena	nce			
Compulsory / Optional: Optional (Elective-1)													
Learning Scheme and Credits     Assessment Scheme													
						FA	TH	SA- TH		S	A		
CL	TL	LL	SLH	NLH	Credit s	T1	T2	(2Hrs 30min s.)	FA- PR	PR	OR	SLA	Total
4		2		6	3	20	20	60	25				125

#### Total IKS Hrs. for course: 01 Hrs

Abbreviations: CL- Classroom Learning, TL- Tutorial Learning, LL- Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, SLA- Self Learning Assessment

Legends: @ Internal Assessment, # External Assessment, *# On Line Examination, @\$ Internal Online Examination

Note:

1. FA-PR represents Term work of 25 Marks ESTD. 1960

#### I. Rationale:

Maintenance is one of the important functions in any type of industry. Also every mechanical engineer should be aware of basic principles of maintenance and maintenance management. With the advancements in manufacturing processes, machine tools and other service sectors, the employment opportunities in the field of maintenance are increasing.

This course in industrial maintenance provides the opportunity to students to get familiar with the maintenance procedures of simple mechanical systems/ components, basics of maintenance management and new approaches like TPM, 5S.

#### **II. Industry / Employer Expected Outcome:**

#### III. Course Outcomes: Students will be able to achieve & demonstrate the following COs on completion of course based learning.

CO1	Describe basic terminology in maintenance practices
CO2	Describe & select appropriate maintenance strategy for given equipment
CO3	Describe basics of TPM & 5S
CO4	Describe the procedure for the maintenance of given mechanical systems or components
CO5	Describe the spares management norms for maintenance and describe lubrication activities
CO6	Describe the documentation used in maintenance activities in industries.



#### **IV. Course Content Details:**

Unit No.	Theory Learning Outcomes (TLO's) aligned to CO's.	Topics / Sub-topics
1	<ul> <li>1.1 Understand the concepts of maintenance.</li> <li>1.2 Study the costs of maintenance.</li> <li>1.3 Understand the organizational structure.</li> </ul>	<ul> <li>Unit-1: Basics of Maintenance Engineering</li> <li>1.1 Definition, Need &amp; Importance of maintenance, basic terminology related to maintenance- Mean time between failure (MTBF), mean time to repair (MTTR), Terotechnology, Reliability</li> <li>1.2 Objectives and functions of maintenance department, consequences of equipment failures</li> <li>1.3 Costs of maintenance</li> <li>1.4 Organizational structure for maintenance, skills required for maintenance activities</li> </ul>
Cours	e Outcome : CO1 Learn	ning Hours : 09 Marks: 06
2	<ul> <li>2.1 Learn the factors to be considered in maintenance systems.</li> <li>2.2 Understand maintenance strategies.</li> <li>2.3 Understand equipment life cycle and maintenance schedule.</li> </ul>	<ul> <li>Unit-2: Maintenance Systems/ Maintenance Strategies</li> <li>2.1 Factors considered in deciding criticality of equipment, Maintenance Plan Preparation,</li> <li>2.2 Maintenance strategies, their characteristics and applications: Break down/ corrective maintenance, Preventive maintenance, Condition based maintenance (CBM), Reliability based maintenance, equipments used for CBM</li> <li>2.3 Equipment Life cycle- Bath Tub Curve and maintenance strategies, Factors considered in maintenance system design</li> <li>2.4 Preparation of maintenance schedule for preventive maintenance, maintenance cycle, Preparing Check list for PM</li> </ul>
Cours		ning Hours : 10 Marks: 12
3	<ul> <li>3.1 Understand the philosophy of TPM and objectives of TPM.</li> <li>3.2 Understand the concept of 5S.</li> </ul>	<ul> <li>Unit-3: Total Productive Maintenance (TPM)</li> <li>3.1 Philosophy of TPM, Six losses due to inferior maintenance, Concept of Autonomous Maintenance</li> <li>3.2 Objectives and Benefits of TPM, Overall Equipment Efficiency (OEE)</li> <li>3.3 Stages of implementation of TPM, Pillars of TPM</li> <li>3.4 5S &amp; its implementation</li> </ul>

Industrial Maintenance (ME23202)

Page**2** 

Cours	e Outcome : CO3 Learnin	ng Hours : 10	Marks: 08
4	<ul> <li>4.1 Learn and perform maintenance of various mechanical systems and components.</li> <li>4.2 Study the safety in maintenance .</li> </ul>	<ul> <li>4.1 Maintenance of T gears &amp; gear drive</li> <li>4.2 Maintenance of P</li> <li>4.3 Maintenance of pneumatic system</li> <li>4.4 Maintenance of hydraulic systems</li> <li>4.5 Maintenance of C</li> </ul>	e of Mechanical Systems & Components bearings, clutches, couplings, flexible drives, es, shafts umps, Air Compressors, Condensers Pneumatic systems: Common problems in is, Maintenance schedule of pneumatic systems hydraulic Systems: Common problems in , Maintenance schedule of hydraulic systems onveyors, Overhead Hoists, cranes ance activities, Energy saving through planned
Cours		ng Hours: 15	Marks: 16
5	<ul><li>5.1 Understand the classification of spares.</li><li>5.2 Learn the various lubrication methods and types of lubricant.</li></ul>	<ul><li>5.1 Classification of spares,</li><li>5.2 Lubrication, difference of the spare of the sp</li></ul>	agement & Lubrication spares, norms for stock, stock of electrical erent methods of lubrication tion of Lubricant, Properties of Lubricant, nt
Cours	e Outcome : CO5 Learnin	ng Hours : 08	Marks: 10
6	<ul><li>6.1 Understand the maintenance requisition procedure.</li><li>6.2 Learn to prepare maintenance manual.</li></ul>	6.1 Maintenance re permit system	tion for maintenance Activities equisition Procedure, Work order, work Ianual, History Cards, Defect analysis, ysis
Cours	e Outcome : CO6 Learnin	ng Hours : 08	Marks: 08

## V. Laboratory Learning Outcome and Aligned Practical / Tutorial Experiences.

Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr. No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
1.1 Learn the basics of maintenance engineering.	1	Assignment on basics of maintenance engineering	2	CO1
2.1 Learn to prepare how to do preventive maintenance.	2	Preparation of check list for preventive maintenance for assigned equipment/ machine in workshop or laboratory	4	CO2
3.1 Understand the concept of 5S / TPM.	3	Assignment on TPM/ Assignment on 5S	4	CO3

Page**3** 

4.1 Perform maintenance activity.	4	Performance of maintenance activity for assigned equipment/ machine (Group activity) & preparation of activity report	4	CO4
5.1 Learn how to prepare lubricaton schedule.	5	Preparation of lubrication schedule for assigned equipment/ machine and its implementation during term	4	CO5
6.1 Learn various maintenance activities.	6	Assignment on documentation for maintenance activities	2	CO6
7.1 Prepare project on maintenance related activities.	7	Mini Project on assigned maintenance related activity in the group of four students [ students to work throughout term and present work]	4	CO1-CO6
8.1 Learn the concepts of maintenance.	8	Expert lecture by maintenance professional or visit to maintenance department in industry	2	CO1-CO6
9.1 Learn Condition based maintenance- using the equipments.	9	Condition based maintenance- using the equipments for measurement of signatures	4	CO2
10.1 Learn how maintenance of pneumatic system is done.	10	Performance of maintenance activities on pneumatic systems	4	CO4
11.1 Learn how maintenance of pneumatic system is done	31/	Performance of maintenance activities on hydraulic systems	4	CO4
		Total	30	

VI. Suggested Micro Project / Assignment/ Activities for Specific Learning / Skills Development (Self Learning): Nil

# VII. Suggested Specifications Table (Theory):

Unit		Distribution of Theory Marks				
No	Topic Title	R Level	U Level	A Level	Total Marks	
1	Basics of Maintenance Engineering	2	4	-	6	
2	Maintenance systems/ Maintenance strategies	4	4	4	12	
3	Total Productive Maintenance	2	4	2	8	
4	Maintenance of mechanical systems and components	4	8	4	16	
5	Spare management and lubrication	4	4	2	10	
6	Documentation for maintenance activities	-	4	4	8	
	Total	16	28	16	60	



#### VIII. Assessment Methodologies/Tools:

#### Formative assessment (Assessment for Learning)

Each Experiment/ assignment to be assessed on following rubrics (10 marks)

alte

Attendance & Regularity	Technical Understanding & Interpretation of given experiment/assignment/ model.	Presentation & completion	Total
02 Marks	04 Marks	04 Marks	10 Marks

#### Summative Assessment (Assessment of Learning)

TH - Term End examination of 60 Marks duration 2 hours 30 mins.

#### **IX. References/ Books:**

Sr.	Title	Author, Publisher, Edition and	ISBN
No.		Year of publication	IODIN
1	Maintenance and spare parts management	P. Gopalkrishnan, A. K. Banerji, Prentice Hall of India, 2 nd Ed; 2004	978-8120-3066-91
2	Principles and practice of Total Productive Maintenance	Bikash Bhadury, Allied Publishers Ltd, 1 st Ed; 1998	978-8170-2380-58
3	PneumaticSystemsPrinciplesandMaintenance	S.R. Mujumdar, Tata McGraw Hill Publishing Company Ltd, 1 st Ed; 1995	978-0074-6023-17
4	Maintenance Fundamentals	R. Keith Mobley, Elsevier Butterworth– Heinemann, 2 nd Ed., 2004	978-0750-6779-81
5	Industrial Maintenance	H P Garg, S Chand & company,3rd Ed., 1987	978-8121-9016-80
6	Plant maintenance engineering	R K Jain, Khanna publications, 2 nd Ed; 2018	978-8174-0929-46
7	Maintenance engineering and management	R.C. Mishra and K Pathak, Prentice Hall of India Pvt. Ltd, New Delhi, 12 th Ed; 2004	978-8120-3457-37
8	Total productive maintenance	K. S. Madhavan, Shingo institute of Japanese management, 1 st Ed; 2014	978-8190-6715-52



	Engineering		B. S. Dhillon, CRC Press, 1 st Ed; 2002	978-1587-1614-21
9	maintenance-	А		
	modern approach			

#### **X.E-References:**

- 1. <u>https://www.licensedelectrician.com/Store/Maintenance.htm</u>
- 2. <u>https://www.youtube.com/watch?v=f58SW0Hwcf0</u>
- 3. <u>https://www.youtube.com/watch?v=6Zh8_x17qhI</u>
- 4. <u>https://www.youtube.com/watch?v=foq43sPPmMo</u>
- 5. https://easyengineering.net/me6012-maintenance-engineering/
- 6. <u>www.sasurieengg.com/e-course-material/MECH/IV-</u> Year%20Sem%208/ME2037%20ME.pdf
- 7. https://www.coursehero.com/file/46869813/ME6012-ME-Complete-Notespdf/

#### XI.CO Vs PO and CO Vs PSO Mapping:

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	2	1	2	ELT	2	-CHAN	3	2	1
CO2	2	2	3	2	2	2	3	2	2
CO3	3	2	3	3	2	2	3	3	2
CO4	3	2	3	3	2	2	3	3	2
CO5	3	3	3	2	3	2	3	3	2
CO6	3	3	3	2	3	20	3	3	2

# XII.Industry Consultation Committee: WebGE

Sr.	Name	Designation	Institute/Organisation
No			
1	Mr. Jawale S. M.	Ex. General Manager	Godrej & Boyce Mfg. Co. Pvt. Ltd. Mumbai
2	Mr. Sachin Khalkar	Deputy Manager	Mahindra & Mahindra Ltd; Nashik
3	Mr. Yogesh Gaidhani	Head of Department, Mechanical Engineering	K K Wagh Polytechnic, Nashik
4	Mr. Gajanan Gore	Lecturer in Mechanical Engineering	Government Polytechnic, Jalna
5	Mr. K. Z. Dhangare	Lecturer in Mechanical Engineering	Government Polytechnic, Mumbai

Page**6** 

6	Miss. A. R. Hagawane	Lecturer in	Government Polytechnic, Mumbai
		Mechanical	
		Engineering	

Coordinator,
Curriculum Development,
Department of

Head of Department
Department of _____

I/C, Curriculum Development Cell Principal CORRECTION