Government Polytechnic, Mumbai

(Academically Autonomous Institute, Government of Maharashtra)

Programme : Diploma in Instrumentation Engineering (Sandwich Pattern)

Learning and Assessment Scheme (P-23)

Duration of Programme : 6 Semester Semester : Fourth With Effect From Academic Year : 2023-24 Duration : 16 WEEKS Scheme : P-23

							Lea	rning Schem	e						Assessment Scheme									
						Actual (Term I		Learning (Term Work +				Theory				Based on LL & TL Practical			L	Based On Self- Learning				
Sr. No		Course Title	Course	Total IK Hrs. Foi Sem.	T 1	lrs./W		Assignment s)	Hrs./Week	and the	Paper Duration			SA- TH		otal	FA	-PR	SA	-PR		SL	А	
INU	Coue		Туре	Sem.				Hrs./Week	1	Creuits	(Hrs.)	T1	T2	Max	Max	Min	Max	Min	M	ax	Min	Max	Min	1
				15	CL	TL	LL	SLH	NLH			Max	Max						PR	OR				
1	IS23107	Process Control System	DSC	-	3		2	1	6	3	2:30	20	20	60	100	40	25	10	25#	-	10	25	10	175
2	IS23108	Unit Operation and Instrumentation	DSC		3		2	1	6	3	2:30	20	20	60	100	40	25	10		25#	10	25	10	175
3	IS23502	Embedded System Microcontrollers	AEC		3		4	1	8	4	2:30	20	20	60	100	40	25	10	25#		10	25	10	175
	IS23201	Power Plant Instrumentation	DSE				-	L.	0	. S	2													
4	IS23202	Elective-I Building Automation	DSE		3		2	1	6	3	2:30	20	20	60	100	40	25	10				25	10	150
	IS23203	Robotics and Automation	DSE								1	6												
5	IS23109	Instrumentation Circuits Design	DSC	1	3	-	2	1	6	3	-						50	20	50#		20	25	10	125
6	IS23606	Industrial Data Communication	SEC		2		2		4	2							25	10		25@	10			50
7	IS23503	Basic Python Programing	AEC				2	2	4	2							25	10				25	10	50
			_	0	17	-	16	7	40	20	10	80	80	240	400	160	200	80	100	50	60	150	60	900

Abbreviations: CL-Classroom Learning, TL-Tutorial Learning, LL- Laboratory Learning, FA-Formative Assessment, SA-Summative Assessment, IKS-Indian Knowledge System, SLA - Self Learning Assessment Legends: @ Internal Assessment, # External Assessment, # On Line Examination, @\$ Internal Online Examination

Note:

1. FA-TH represents addition of two-20 marks class tests conducted during the semester.

2. If candidate is not securing minimum passing marks in FA-PR of any course, then the candidate shall be declared as "Detained" in that semester.

3. If candidate is not securing minimum passing marks in SLA of any course, then the candidate shall be declared as fail and will have to repeat and resubmit SLA work.

4. Notional Learning hours for the semester are (CL+TL+LL+SL) hours X 16 Weeks

5. 1 credit is equivalent to 30 Notional hrs.

6. *Self-learning hours shall not be reflected in the Time Table.

Course Category: Discipline Specific Core Course (DSC): 3, Discipline Specific Elective (DSE):0, Value Education Course (VEC):0, Intern. /Apprentice. /Project /Community (INP):0, Ability Enhancement Course (AEC): 1, Skill Enhancement Course (SEC): 1, Interdisciplinary Elective (IDE): 3

Department Coordinator, Curriculum Development, Dept. of Instrumentation Engineering Head of Department, Dept. of Instrumentation Engineering In-Charge Curriculum Development Cell Principal, Government Polytechnic Mumbai

Course Code: IS23107 Course Title: Process Control System Compulsory/Optional: Compulsory										
Compulsory/Ontional: Compulsory										
Compulsory/ Optional: Compulsory										
Learning Scheme and Credits Assessment Scheme										
SA-TH (2.30 FA- SA- Total										
CL TL LL SLH NLH Credits FA-TH (2.50 Hrs.) PR PR OR SLA										
03 02 01 06 03 20 20 60 25 25# 25 175										

Total IKS Hrs. for course: -- Hrs.

Abbreviations: CL- Class Room Learning, TL- Tutorial Learning, LL- Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA-Formative Assessment, SA-Summative assessment, SLA-Self Learning Assessment

Legends: @InternalAssessment, #ExternalAssessment, *#On Line Examination, @\$Internal Online Examination

Note:

- 1. FA-PR represents tutorial/practical term work of 25Marks.
- 2. SA-OR represents end term oral examination of 25Marks.
- 3. SLA represents self-learning Assessment of 25Marks.

I. Rationale

Process control in continuous production processes is a combination of control engineering and chemical engineering disciplines that uses industrial control systems to achieve a production level of consistency, economy and safety which could not be achieved purely by human manual control. It is implemented widely in industries such as oil refining, pulp and paper manufacturing, chemical processing and power generating plants. Process control technology allows manufacturers to keep their operations running within specified limits and to set more precise limits to maximize profitability, ensure quality and prioritize safety.

II. Industry/Employer Expected Outcome

The aim of this course is to help the student to achieve the following industry identified outcome through various learning experiences: "Understand and apply appropriate control scheme for the given industrial application".

III. Course Outcomes: Students will be able to achieve & demonstrate the following COs on completion of course based learning

CO1	Identify different elements and variables for the given control system							
CO2	Use different control modes to control the given process							
CO3	Apply given control system in industrial application							
CO4	Prepare project document for given process/project							
CO5	Understand hazardous area classification and intrinsic safety in industry							

	•	ent Details:	Instrumentation Engineering					
Unit No.	The	eory Learning Outcomes FLO's)aligned to CO's	Topics/ Sub-topics					
1	 terminology TLO1.5 Explanations Block Diagram and working of feedback control system TLO1.6 List applications of feedback system 		 Unit-I Introduction to Basic Process Control System: Process-Definition, types-continuous and batch, and their examples. Process Control System–Definition, it's importance in process industries, Elements of Process Control System-Sensor/Transducer/ Transmitter, Controller Final Control Element and other instruments that support a process control loop – Recorders Indicators, Alarms, and Interlocks. Process Control Terminology- Controlled variable Measured Variable, Set-point, Deviation Manipulated Variable, Disturbance/Load Variables Familiarization of Basic Process Control System Feedback control system concepts its Advantages limitations, and practical applications. 					
2	TLO2.2 TLO2.3 TLO2.4	Identify different modes of feedback controller Describe different modes of feedback controller. Compare different types of PID controller. Explain PID controller tuning Describe different methods of PID controller tuning	 Unit –II Modes of PID/Feedback Controllers and Tuning: 2.1 Modes of feedback controller –ON-OFF, Proportional(P), Integral(I), Derivative, Proportional- Integral (PI), Proportional-Derivative (PD), three term controllers (PID). Control mode selection criteria for different processes. 2.2 Types of PID controller-Electronic and pneumatic type PID controllers and their comparison. 2.3 PID controller tuning-Definition, tuning criteria. 2.4 PID controller tuning methods-Ziegler Nichols open loop response and closed loop response methods. 					
(Course Ou	itcome: CO2 Teaching						
3			Unit-III Advanced Process Control Systems					
	TLO3.2 TLO3.3	Understand the given advance control system Describe its operation List its advantages & disadvantages Illustrate industrial application for given control system Compare different control systems	 3.1 Cascade control systems: Block diagram, working, application, advantages, limitation 3.2 Feed-forward control systems: Block diagram, working, application, advantages, limitation 3.3 Ratio control systems-Types: Multiplier and Divider, Block diagram, working, application, advantages, Limitation 3.4 Split-range control systems: Block diagram, working, application, advantages, limitation 					

3.5 **Override control systems:** Block diagram, working, application, advantages, Limitation

				a	application, advantages, Limitation
	Course Ou	itcome:CO3	Teaching	Hours:	::08 Marks:09
				Unit-I	-IV Project and Documentation
4	TLO4.1 TLO4.2 TLO4.3 TLO4.4 TLO4.5 TLO4.6 TLO4.7 TLO4.8	Identify different IS Understand Instrum identification system Draw process contro ISA symbols. Describe project and different phases of p Explain role of instr engineers in project. Describe different p document Interpret project doc Explain loop checki &Commissioning	ent n. ol loop using d activities at project umentation roject cument	 4.2 4.3 4.4 4.5 4.6 	 Symbol & Legend P&ID's: General Notes & Index, Standard Symbols & Nomenclature Outlin of Identification & Instrumentation Symbols Instrument line, symbols, General instrument function symbols, Control valve body symbols Primary element symbols. Motor Control Signal Seal Plan Instrumentation Instrument identification: Tag numbering, Front panel symbol, Auxiliary symbol, Field instrument symbols Process control loops using ISA symbols–Temperature, Flow, Level, Pressure Project-Types of Projects, typical life cycle of project, Role of process control/instrumentation engineer in setting up a process control-based project. Front end and detailed engineering design documents-Instrument specification sheets, Hookup Drawing, Bill of materials. Cable scheduling, Cable trays. Process Flow Diagram (PFD), Piping and Instrumentation Diagrams (P&IDs), Equipment List, Loop checking & Commissioning-Pre startup safety review (PSSR), Loop checking and commissioning –Logic Check, Control valve Checking, Safety Valve Checking.
	Course Ou	tcome:CO4	Teaching l		
5	TLO5.2 TLO5.3 TLO5.4 TLO5.5	Define hazardous are Explain hazardous ar classification as per o standards. Describe ingress prot Explain different pro methods against expl Describe Intrinsic sa Explain concept of E	rea different tection. tection losion. fety	5.1 5.2 5.3 5.4	 V Safety in Process Control Systems Hazardous area classification: Hazardous Area &Material classification as per NEC/IEC Standards. Introduction to Fire& Gas Detectors Enclosures: Ingress protection IP classification, NEMA types Protection techniques used to reduce explosion hazards: Explosion proof, oil immersion, purging, Flameproof Intrinsic Safety: Definition, Intrinsically Safe (IS) barrier systems.
(Course Ou	tcome:CO5	Teaching l	Hours :	:05 Marks:25

V. Laboratory Learning Outcome and Aligned Practical/ Tutorial Experiences.

Sr No	Practical/Tutorial/Laboratory Learning Outcome (LLO)	Laboratory Experiment/Practical Titles / Tutorial Titles	Number of hrs.	Relevant Cos
	Learning Outcome (LLO)			0.03
1	LLO1.1 Identify the process variables LLO1.2 Explain the process variables	Identify the process variables- CV(PV), MV, SP, DVs for given process.	2	CO1
2	 LLO2.1 Understand operation of ON- OFF controller. LLO2.2 Configure controller to operate in ON-OFF mode LLO2.3 Understand its advantages & Limitation. 	Implement the on-off controller for controlling given process	2	CO2
3	 LLO3.1 Understand feedback control system. LLO3.2 Configure feedback controller LLO3.3 Understand its advantages & Limitations. 	Implement the feedback control system for given process	2	CO3
4	LLO4.1 Understand ISA symbol. LLO4.2 Draw ISA symbol for the lab instrument/equipment.	Draw ISA/ P&ID symbols for given field instruments/control room instruments.	2	CO4
5	LLO5.1 Understand hazard, Hazardous area. LLO5.2 Suggest appropriate protection technique	laboratory and suggest protection method	2	CO5
6	LLO6.1 Understand operation of P- Mode of controller LLO6.2 Configure controller to operate in P-mode LLO6.3 Understand advantages & limitations of P-mode.	Implement the P- controller for controlling given process	2	CO2
7	 LLO7.1 Understand operation of P- Mode of controller LLO7.2 Configure controller to operate in PI mode LLO7.3 Understand advantages & Limitations of P mode. 	Implement the PI- controller for controlling given process	2	CO2
8	LLO8.1 Understand operation of PID mode of controller LLO8.2 Configure controller to operate in PID mode LLO8.3 Understand advantages & Limitations of PID mode	Implement the PID-controller for controlling given process	2	CO2
9	LLO9.1 Understand Cascade control system LLO9.2 Configure Cascade controller LLO9.3 Understand its advantages & limitation	Implement the cascade control system for given process to	2	CO3

00/01/1	meni i biyiechnic Mumbui	111511 111		memeering
10	LLO10.1 Understand Ratio control	Implement the ratio control system for		
	system.	controlling given process		
	LLO10.2 Configure ratio controller		2	CO3
	LLO10.3 Understand its advantages &			
	limitations.			
11	LLO11.1 Understand PFD & PID	Develop Process Flow Diagram (PFD)		
	documents.	and it's subsequent Piping &	2	CO4
	LLO11.2 Draw PFD & PID sheet for	Instrumentation Diagram (P &ID) for	2	004
	the given application.	given laboratory/ industrial application.		
12	LLO12.1 Understand instrument index	Develop Piping & Instrumentation		
	sheet.	Diagram (P &ID) and prepare	2	CO4
	LLO12.2 Prepare instrument index	instrument index for given laboratory/	2	004
	sheet for given PID	industrial process control application.		
13	LLO13.1 Understand loop diagram.	Develop loop diagram for given process		
	LLO13.2 Prepare loop diagram for	control loop/system.	2	CO4
	given application.			
14	LLO14.1 Understand specification sheet	Develop specification sheet for given		
	LLO14.2 Prepare specification sheet for	process equipment.	2	CO4
	given instrument.			
15	LLO15.1 Understand hook up diagram	Develop installation hookup of DP		
	& Bill of material.	transmitter for liquid level measurement		
	LLO15.2 Draw hookup diagram and		2	CO4
	prepare bill of material for			
	given instrument.			

Note: Minimum 12 experiments should be performed in a term for completion of TW (All Cos should be covered compulsorily).

VI. Suggested Micro Project/ Assignment/ Activities for Specific Learning/ Skills Development (Self Learning): (Minimum 05 Assignments)

- 1. Prepare a model of ratio control loop.
- 2. Develop feedback control loop for temperature control.
- 3. Build intrinsically safe Zener barrier circuit for the given application in hazardous area.
- 4. Visit nearby process industries, classify them in appropriate hazardous classes and prepare a report.
- 5. Sketch the typical ISA symbols with scale on half imperial size drawing sheet.

VII. Specification Table:

Unit		Distribution of Theory Marks					
No	Topic Title	R Level	U Level	A Level	Total Marks		
1	Introduction to basic process control system	2	6	0	08		
2	Modes of PID/Feedback controllers and tuning	2	3	6	11		
3	Advanced process control systems	2	3	4	09		
4	Project and Documentation	4	9	12	25		
5	Safety in process control systems	2	3	2	07		
	Total	12	24	24	60		

Formative assessment (Assessment for Learning)

- Rubrics for continuous assessment based on attendance, process and product related performance indicators. (25 Marks)
- Rubrics for continuous assessment of self-learning assignments/ micro project/ activities based on process and product related performance indicators. (25 Marks)

Summative Assessment (Assessment of Learning)

- Rubrics for assessment based on laboratory process and product related performance indicators. (25 Marks)
- End of the term theory examination. (60 Marks)

IX. Suggested COs–POs Matrix Form

	Programme Outcomes (POs)					Programm Outcomes (POs)			
Course Out- comes(COs)	PO-1 Basic and Discipline Specific Know- ledge	PO-2 Problem Analysis	PO-3 Design/ Develop- ment of Solutions	PO-4 Engi- neering Tools, Experime- ntation	PO-5 Engineerin g Practices For Society, Sustain- ability and Environ- ment	PO-6 Project Manage -ment	PO-7 Life Long Learn- ing	PSO -1	PSO -2
CO1		2	2				3	1	1
CO2	1		3	3			3	3	1
CO3		2	3	3			3	3	2
CO4				3		3	3	3	1
CO5		1		2	3		3	3	2
Legends:	- High:03, M	edium:02, Lo	ow:01, No Ma	apping:					

X. Suggested Learning Materials/ Books:

Sr. No	Title	Author, Publisher, Edition and Year Of publication	ISBN
1	Chemical process control: An introduction to theory and practice	Stephanopoulos, G. Prentice-Hall, New Delhi. PTR (1984)	978-0131286290
2	Process control & Instrumentation Technology	C. D. Johnson, Published by Wiley	978-0471057895
3	Instrument Engineers Handbook VolII Process Control	Bela G. Liptak., Published by Chilton, Philadelphia (1969)	978-0801955198
4	Applied Instrumentation Vol 1-4	Andrew, William G., Published by DA Information Services (1982)	978-0872013841

XI. Learning Websites & Portals

Sr.	Link/ Portal	Description
No		
1	https://www.omega.co.uk/prodinfo/pid-controllers.html	
2	http://instrumentationportal.com/	
3	http://scholar.vimaru.edu.vn/sites/default/files/diemphd/files/isa_5-1_2009_0.pdf	
4	https://www.academia.edu/29216379/P_and_ID_SYMBOLS_P_and_ID_SYMBOLS	
	ISA_Symbols_and_Loop_Diagrams	
5	http://www.lesman.com/train/webinars/Webinar-Slides-Control-101.pdf	

XII. Academic Consultation Committee/Industry Consultation Committee:

Sr. No	Name	Designation	Institute/Organization
1	Mr. Pravin Nalawade.	Associate Chief Engineer (Instrumentation & Control)	Technip Energies Mumbai
2	Mr. Saurabh Kharjule	Lecturer in Instrumentation Engg.	Government Polytechnic Ratnagiri
3	Mr. S.G. Thube	Selection grade Lecturer Instrumentation Engg	Government Polytechnic, Mumbai
4	Mr. U.B. Shinde	Senior Lecturer Instrumentation Engg	Government Polytechnic, Mumbai

Coordinator, Curriculum Development, Department of Instrumentation Engg.

Head of Department Department of Instrumentation Engg.

Incharge, Curriculum Development Cell Government Polytechnic, Mumbai

Principal Government Polytechnic, Mumbai

Progr	Programme: Diploma in Instrumentation Engineering (E&C) (Sandwich Pattern)												
Course Code: IS23108 Course Title: Unit Operations and Instrumentation				n									
Comp	Compulsory / Optional: Compulsory												
Learning Scheme and Credits				Assessment Scheme									
						FA-	TH	SA-TH (2:30	FA-PR	SA	۱-		
CL	TL	LL	SLH	NLH	Credits	T1	T2	Hrs.)		PR	OR	SLA	Total
3		2	1	6	3	20	20	60	25		25#	25	175

Abbreviations: CL-Class Room Learning, TL-Tutorial Learning, LL-Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA-Formative Assessment, SA-Summative assessment, SLA-Self Learning Assessment

Legends: @ Internal Assessment, # External Assessment, *# Online Examination, @\$ Internal Online Examination

Note:

- 1. FA-TH represents addition of two class tests 20 marks each conducted during the term.
- 2. FA-PR represents tutorial/practical term work of 25 Marks.
- 3. SLA represents self-learning Assessment of 25 Marks.
- 4. SA-TH represents the end term theory examination of 60 Marks.
- 5. SA-OR represents the end term Oral examination of 25 Marks

I. Rationale:

Instrumentation diploma holders are expected to work in process industries such as petrochemical, power, chemical and fertilizer industries. Fundamental knowledge of different unit operations used in the process industries is essential. This course is introduced with the view that the students will be familiar with various processes and process equipment and instrumentation required for the unit operations.

II. Industry / Employer Expected Outcome:

The aim of this course is to encourage students to achieve knowledge, skills to work in process industries an identification of various unit operations.

- 1. Understand various operations & processes in industry.
- 2. Identify various equipment in process industry.
- **III. Course Outcome:** Students will be able to achieve & demonstrate the following COs on completion of course based learning.

CO1	Identify various unit operations and processes in industries		
CO2 Demonstrate operation of Boiler and Heat Exchanger equipment and its instrumentation and control			
		CO3	Explain the operation of Distillation equipment and its control schemes
CO4	Describe Evaporation and Drying equipment and associated instrumentation		
CO5	Explain Crystallization equipment and associated controls		

Unit Operation & Instrumentation (IS23108)

Government Polytechnic, Mumbai

IV

	se Content Details:	
Unit	Theory Learning Outcomes	Topics / Sub-topics
No.	(TLO's) aligned to CO's	Unit-I Introduction to Unit Operations
1		Unit-I Introduction to Unit Operations
-	TLO1.1 Define unit operation & unit process.	1.1 Definition of unit operation and unit process.
	TLO1.2 Explain Batch & Continuous process.	1.2 Endothermic and Exothermic reaction.
	TLO1.3 Describe Endothermic & Exothermic	1.3 Batch process & continuous process.
	reaction.	1.4 Reversible and Irreversible process.
	TLO1.4 Explain Reversible & Irreversible	 Applications of the various units in process
	process.	industries like: Thermal power plant, Oil
	TLO1.5 Explain application of the various	refinery, Steel industry (process flow
	units in process industries with	diagram and operation)
	process flow diagram.	diagram and operation)
		Hours: 06 hrs. Marks: 10
		Unit-II Heat Exchangers and Boilers
2		
	TLO2.1 Explain basic concept and flow sheet	2.1 Basic concept & flow sheet symbol.
	symbol of heat exchanger and boilers.	2.2 Types of heat exchange equipment.
	TLO2.2 List types of heat exchanger	2.3 Shell and tube heat exchanger: diagram, construction
	equipment.	operation, controls (Feedback, cascade, feed forward
	TLO2.3 Explain shell & tube heat exchanger.	control).
	TLO2.4 Enlist types of boilers.	2.4 Basic concept of boiler, flow sheet symbol & types:
	TLO2.5 Explain water tube boiler.	Water tube boiler Vs. Fire tube boiler.
	TLO2.6 Explain different boiler control methods.	2.5 Water tube & Fire tube boiler: diagram, construction and operation.
	TLO2.7 List types of drum level control.	2.6 Boiler controls: safety interlocks, Steam Temperatur
	TLO2.8 Explain different drum level control	control and Burner Management System (BMS).
	methods.	2.7 Drum level control: swelling and shrinking
		phenomenon, single element control, two element
		control, and three element control
(Course Outcome: CO2 Teaching	Hours: 14 hrs. Marks: 16
	TLO3.1 Define basic concept of distillation	Unit-III Distillation
3	process.	3.1 Definition, basic concept of distillation process, flow
	TLO3.2 Enlist methods of distillation.	sheet symbol
	TLO3.3 Explain flash distillation	3.2 Methods of distillation – flash distillation,
	TLO3.4 Explain fractionating column	fractionating column distillation (Equipment
	distillation.	setup, diagram & operation)
	TLO3.5 Explain different controls for	3.3 Different controls for distillation: Overload control
	distillation.	Bottom product control.
	TLO3.6 State applications of distillation.	3.4 Applications.
	TLO3.7 Describe process instrumentation	
	data sheet & specifications.	
	L L	

		Unit-IV Evaporation and Drying
4	 TLO4.1 Define evaporation process. TLO4.2 Explain single & multiple effect evaporators. TLO4.3 Enlist types of evaporators. TLO4.4 Explain different types of evaporators. TLO4.5 Explain methods of increasing economy & vapor recompression. TLO4.6 Describe different controls for evaporation unit. TLO4.7 Explain factors on which rate of drying depends. TLO4.8 Explain different types of dryers. TLO4.9 Explain methods of dryer control. 	 4.1 Definition, evaporation process, Capacity and economy of evaporator, flow sheet 4.2 Single & multiple effect evaporators: diagram & operation 4.3 Evaporator types: Natural vs. Forced circulation evaporators, Climbing film evaporator, Agitated film evaporator (diagrams and operation & application) 4.4 Methods of increasing economy, Vapor recompression operation. 4.5 Different controls for evaporation unit. 4.6 Introduction of Dryers. 4.7 Factors on which rate of drying depends. 4.8 Types of dryers: Tray dryer, rotary dryer, drum
	TLO4.8 Explain different types of dryers.	4.7 Factors on which rate of drying depends.
C	Course Outcome: CO4 Teaching	disadvantages, application.Hours: 12 hrs.Marks: 14
5	 TLO5.1 Define crystallization. TLO5.2 Describe the concept Magma, crystallization process and importance of crystal size. TLO5.3 Enlist types of crystallizer. TLO5.4 Explain different types of crystallizer. TLO5.5 Explain controls of crystallizer. 	 Unit-V Crystallization 5.1 Definition. 5.2 Magma, crystallization process, importance of crystal size 5.3 Crystallizer types: 5.3.1 Continuous crystallizer 5.3.2 Draft Tube Baffle (DTB) crystallizer (Diagram, operations, advantages & disadvantages, application.)
C	Course Outcome: CO5 Teaching	Hours: 06 hrs. Marks: 08

V. Laboratory Learning Outcome and Aligned Practical / Tutorial Experiences.

Sr No	Practical / Tutorial / Laboratory Learning Outcome (LLO)	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of Hrs.	Relevant COs
1	LLO1.1 Identify the ISA symbols of various units and process equipment.	Draw ISA symbols of various units and	02	CO1
2	LLO2.1 Prepare a drawing sheet for different types Heat Exchanger.	Different types Heat Exchanger.	02	CO2
3	LLO3.1 Differentiate Fire tube & Water tube Boilers with help of diagram.		02	CO2
4	LLO4.1 Prepare as well labelled diagram of Flash & Fractionating Distillation column setup.	Flash & Fractionating Distillation	02	CO3
5	LLO5.1 Prepare a drawing sheet for Single effect & Multiple effect	e i	02	CO4

Unit Operation & Instrumentation (IS23108)

(Approved copy)

P-23 Scheme Page no.3 /6

Government Polytechnic, Mumbai

Instrumentation Engineering

Gov	ernment Polytechnic, Mumbai	Instrumentation Engineering		
	Evaporators.			
6	LLO6.1 Identify different types of crystallization.	Sketch continuous crystallizer & Draft tube baffle (DTB) crystallizer.	02	CO5
7	LLO7.1 Interpret process flow diagram of Thermal power plant.	Prepare a drawing sheet showing Process flow diagram of Thermal power plant.	02	CO2
8	LLO8.1 Interpret the control schemes for a heat exchanger: Feedback control, Cascade control, and Feedforward control.	Prepare a drawing sheet showing Feedback, Cascade & Feedforward Heat Exchanger control scheme.	02	CO2
9	LLO9.1 Interpret different boiler control scheme.	Prepare a drawing sheet for Single element, Two element & Three element Boiler control scheme.	02	CO2
10	LLO10.1 Interpret different distillation column control	Prepare a drawing sheet for Overhead & Bottom product control scheme in Distillation column	02	CO3
11	LLO11.1 Identify the different components of burner management system	Draw a well labelled Burner Management System (BMS).	02	CO2
12	LLO12.1 Interpret Feedback, Cascade & Feedforward control scheme for Evaporator.	Prepare a drawing sheet showing Feedback, Cascade & Feedforward control scheme for Evaporator.	02	CO4
13	LLO13.1 Interpret process flow diagram of oil refinery.	Prepare a drawing sheet showing process flow diagram of oil refinery.	02	CO1
14	LLO14.1 Interpret process flow diagram of steel industry	Prepare a drawing sheet showing Process flow diagram of steel industry	02	CO1
15	LLO15.1 Identify the different types of dryers.	Sketch Tray, Rotary & Drum dryer.	02	CO4

Note: Minimum 12 experiments are compulsory and should be chosen such that all COs will be covered, also Industry expert lecture and Industrial Visit should arrange.

VI. Suggested Micro Project / Assignment/ Activities for Specific Learning / Skills Development (Self-Learning):

Micro Project:

- 1. Prepare model of different types of boilers.
- 2. Prepare model of control scheme for boiler.
- 3. Prepare model of different types of heat exchangers.
- 4. Prepare model of different of Dryers.
- 5. Prepare model of Distillation column.

VII. Specification Table:

Unit	Topic Title	Distribution of Theory Marks					
No	Topic The	R Level	U Level	A Level	Total Marks		
1	Introduction to Unit Operations	2	4	4	10		

Unit Operation & Instrumentation (IS23108)

(Approved copy)

P-23 Scheme Page no.4 /6

Govern	Government Polytechnic, Mumbai		Instrumentation Engineering			
2	Heat Exchangers and Boilers	4	6	6	16	
3	Distillation	2	4	6	12	
4	Evaporation and Drying	2	6	6	14	
5	Crystallization	2	4	2	08	
	Total Marks	12	24	24	60	

VIII. Assessment Methodologies/Tools:

Formative assessment (Assessment for Learning)

- Rubrics for continuous assessment based on attendance, process and product related performance indicators. (25 Marks)
- Rubrics for continuous assessment of self-learning assignments/ micro project/ activities based on process and product related performance indicators. (25 Marks)

Summative Assessment (Assessment of Learning)

- Rubrics for assessment based on laboratory process and product related performance indicators. (25 Marks)
- End of the term theory examination. (60 Marks)

IX. Suggested COs - POs Matrix Form

									Programme Outcomes (POs)	
Course Out- comes (COs)	PO-1 Basic and Disciplin e Specific Know- ledge	PO-2 Proble m Analysi s	PO-3 Design/ Develop ment of Solutions	PO-4 Engineer ing Tools, Experim entation	PO-5 Engineering Practices For Society, Sustain- ability and Environ- ment	PO-6 Project Manage ment	PO-7 Life Long Learn- ing	PSO - 1	PSO - 2	
CO1	1	1	41	1	- N	1	2	1		
CO2	2	3	3	NOW	EDGE	1	2	2		
CO3	2	3	3	1		1	2	2		
CO4	1	3	3	1		1	2	2		
CO5	1	3	3	1		1	2	2		
Legends:	- High:03, N	/ledium:02,	Low:01, No	Mapping:						

X. Suggested Learning Materials / Books:

Sr. No.	Title	Author, Publication, Edition and Year of Publication	ISBN NO.
1	Outline of chemicalTechnology	Gopala Rao & Sittiney, East West Press, 3 rd edition, 1997	978-8185938790

(Approved copy)

P-23 Scheme Page no.5 /6 Government Polytechnic, Mumbai

Instrumentation Engineering

00/01/11	ieni i olylechnic, Mumbul	Instrumentation Engineering		
2	Unit operations of chemical Engineering	MCcabe & Smith, McGraw Hill, 7 th edition,2004	978-0072848236	
3	Elementary Principles of chemical processes	Bullard, Lisa G. Rousseau, Ronald W.Felder, Richard M. John Willey and Sons Publ.,4 th edition, 2015	978-1118431221	
4	Chemical Engineer'sHandbook	Green, Don, Perry, Robert, McGraw Hill publication ,8 th edition,2007	978-0071422949	
5	Unit operations -Vol 1& 2	K. A. Gawane, Nirali Prakashan, 2 nd edition, 2014	978-8196396114 978-8196396121	
6	Applied InstrumentationVol 1-4	W.G Andrew, H.B Williams, GulfPublishers, 3 rd edition,1993	978-0872010475	
7	Instrument Engineers Handbook Vol. –II Process Control	Bela G. Liptak.Taylor and Fransis pub ISA,4th edition,2013	978-0750622547	

XI. Learning website and Portal:

Sr. No.	Link / Portal	Description
1	https://nptel.ac.in/courses/112/105/112105248/	Unit operation related nptel courses
2	https://nptel.ac.in/courses/112/107/112107216/	Unit operation related nptel courses
3	https://nptel.ac.in/courses/103/103/103103035/	Unit operation related nptel courses

XII. Academic Consultation Committee/Industry Consultation Committee:

Sr. No.	Name	Designation	Institute/Organization
1	Mr. Sandeepkumar Yadav	Assistance Manager	Assistant Manager Mahanagar Gas Pvt. Ltd.
2	Mr. J. K. Pohnerkar	Lecturer in Chemical Engg.	Govt. Polytechnic, Jalna
3	Mr. U. B. Shinde	Lecturer in Instrumentation	Govt. Polytechnic, Mumbai
4	Mr. M. K. Kulkarni	Lecturer in Instrumentation	Govt. Polytechnic, Mumbai

Coordinator, Curriculum Development, Department of Instrumentation Engg.

Head of Department Department of Instrumentation Engg.

Incharge, Curriculum Development Cell Government Polytechnic, Mumbai

Principal Government Polytechnic, Mumbai

Unit Operation & Instrumentation (IS23108)

(Approved copy)

P-23 Scheme Page no.6 /6

Progr	Programme: Diploma in Instrumentation Engineering (E&C) (Sandwich Pattern)												
Course Code: IS23502 Course T					Fitle:	Embe	edded Syst	tem Mici	rocontr	ollers			
Comp	Compulsory / Optional: Compulsory												
Learr	ning Sch	eme and	Credits		-	Assessment Scheme							
								SA-TH	FA-	SA	۷-		
CL	TL	LL	SLH	NLH	Credits	FA	-TH	(2:30 Hrs.)	PR	PR	OR	SLA	Total
3		4	1	8	4	20	20	60	25	25#		25	175

Total IKS Hrs. for course: -- Hrs.

Abbreviations: CL- Class Room Learning, TL- Tutorial Learning, LL- Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, SLA- Self Learning Assessment

Legends: @ Internal Assessment, # External Assessment, *# Online Examination, @\$ Internal Online Examination

Note:

- 1. FA-TH represents addition of two 20 marks class tests conducted during the term.
- 2. FA-PR represents tutorial/practical term work of 25 Marks.
- 3. SLA represents self-learning Assessment of 25 Marks.
- 4. SA-TH represents the end term theory examination of 60 Marks.
- 5. SA-PR represents the end term Practical examination of 25 Marks

I. Rationale:

Microcontroller is the key device in automation. It is being used in domestic, commercial, industrial and consumer goods from low end to high end applications. Microcontroller enhancing the pace of technology. Diploma engineers shall deal with various Microcontroller based systems and its maintenance. This course intends to develop skills to build and maintain the Microcontroller based systems.

II. Industry / Employer Expected Outcome:

The aim of this course is to help the student to achieve the following industry identified outcome through various learning experiences:

"Develop and maintain the microcontroller-based applications."

III. Course Outcomes: Students will be able to achieve & demonstrate the following COs on completion of course based learning

CO1	Comprehend the meaning of embedded system	
CO2	Interpret the functions of different internal parts of microcontroller 8051	
CO3	Interpret the basic functions of Arduino Uno	
CO4	Interpret the basic use of memories and peripherals	
CO5	Construct basic applications using input/output devices	

Embedded System Microcontrollers (IS23502)

Unit No.	Theory Learning Outcomes (TLO's) aligned to CO's	Topics / Sub-topics			
1		Unit-I Basics of Embedded System			
	TLO1.1 Differentiatebetweenmicroprocessorandmicrocontroller-based systemsTLO1.2 Differentiatebetweendifferentembedded architecturesTLO1.3 Classify of embedded systemTLO1.4 DefineembeddedsystemcharacteristicsTLO1.5 Differentiatebetweenderivatives of 8051TLO1.6 Listapplicationssystems	 Microprocessor & microcontroller-based system, blo diagrams. Embedded system architectures: Von Neumar Harvard. RISC/CISC, DSP. Classification of embedded systems. Characteristics of embedded system. Specifications of 8051 microcontroller. Derivatives of microcontroller 8051 [from 			
(Course Outcome: CO1 Teaching	g Hours: 08hrs Marks: 10			
2	254	Unit-II 8051 Architecture			
	 TLO2.1 Explain architecture of 8051 TLO2.2 Explain pin function of 8051 TLO2.3 Explain memory organization of 8051 TLO2.4 Describe the function of SFRs and their bits TLO2.5 Explain modes of timer modes and serial modes TLO2.6 Describe software development tools 	 2.1 Architecture of 8051 microcontroller. 2.2 Pin diagram of 8051 microcontroller and function of each pin. 2.3 Boolean processor. 2.4 Input/ output ports, circuits & their alternate functions. 2.5 Internal memory organization [RAM & ROM]. 2.6 Program counter and stack pointer. 2.7 Flag and PSW register. 2.8 Timers/ counters- block diagram of timer control, TMOD, TCON, THx, TLx registers, modes of operation. 2.9 Interrupts- block diagram of interrupt control, vector addresses, priority, IE, IP registers. 2.10 Serial data: Modes, block diagram of serial control, SBUF, SCON, PCON registers 2.11 Software development tools: editor, assembler, compiler, cross compiler, linker, locator 			
(Course Outcome: CO2 Teachin	ng Hours: 10hrs Marks: 14			
3		Unit-III AVR Microcontroller			
	 TLO3.1 Describe the features of At-mega 328P IC and Arduino uno TLO3.2 Differentiate between various Arduino boards TLO3.3 Explain block and pin diagram of Arduino TLO3.4 Explain different Arduino functions 	 3.1 Features of At-mega 328P and Arduino Uno board. 3.2 Arduino open-source community. 3.3 Arduino boards and their specifications. [Uno, Due, Lilypad, Robot, Esplora, Mega] 3.4 Block diagram of Arduino uno. 3.5 Function of pins on Arduino uno. 3.6 Arduino library functions 3.6.1 Data types, variables, operators 			

Embedded System Microcontrollers (IS23502)

Instrumentation Engineerit
3.6.2 I/O functions3.6.3 PWM functions3.6.4 Random functions3.6.5 Serial functions: UART, I2C, SPI
Teaching Hours: 07hrs Marks: 10
Unit-IVSystem Memory and Peripheralsat and arious4.1 Memory System Architecture 4.1.1 Cache memory, virtual memory. 4.1.2 Memory management unit. 4.1.3 Address translation.emory ferent4.2 Memory Technology 4.2.1 SRAM, DRAM. 4.2.2 ROM, EPROM, E²PROM, NVROM.4.3 External memory interfacing with 8051. 4.4 Peripheral Devices 4.4.1 Watchdog timer. 4.4.2 DMA controller.
Teaching Hours: 08hrs Marks: 10
 Ing of g I/O ng of no of g of no of no of so fill Substituting for the second se

V. Laboratory Learning Outcome and Aligned Practical / Tutorial Experiences.

Sr No	Practical / Tutorial / Laboratory Learning Outcome (LLO)		Laboratory Experiment / Practical Titles / Tutorial Titles	Number of Hrs.	Relevant COs
1		Categorize the given microcontroller based on architecture Compare architectures of embedded system	Categorize the given microcontrollers based on architectures.	02	CO1
2		Interpret keil software Compare derivatives of 8051	Keil software, different windows [edit, project, output, memory, I/O ports etc.],	02	CO2

Embedded System Microcontrollers (IS23502)

		functions and different directives.	entation Ef	izincerinz
		functions and different diffectives.		
3	LLO3.1 Write 'c' program to perform arithmetic and logical operations	Arithmetic and logical operations using Keil.	02	CO2
4	LLO4.1 Write 'c' program to rearrange numbers	Rearrange nos. in ascending/ descending order located in internal data memory.	02	CO2
5	LLO5.1 Write 'c' program to generate different time delays	Time delays in operation [1ms to 50ms] using T0 and T1 timers.	02	CO2
6	LLO6.1 Write 'c' program to transfer data serially	Serial data transfer over serial port using serial interrupt.	02	CO2
7	LLO7.1 Write 'c' program to transfer data serially	Receive data of various length serially over serial port.	02	CO2
8	LLO8.1 Identify the different blocks and pins on Arduino unoLLO8.2 Write functions of different blocks and pins on Arduino uno	Blocks and pins of Arduino Uno	02	CO3
9	LLO9.1 Interface GSM module with Arduino using rs232 interfaceLLO9.2 Write 'c' program to transfer data serially	Interface GSM module with Arduino board using RS 232	02	CO3
10	LLO10.1 Write 'c' program to write and read internal E ² PROM	Write and read data in internal E ² PROM memory using Arduino.	02	CO4
11	LLO11.1 Write 'c' program to write and read external RAM	Write and read data in external SRAM memory using Arduino.	02	CO4
12	LLO12.1 Construct circuit to interface LCD LLO12.2 Write 'c' program to print message on LCD	Interface LCD to 8051 Microcontroller. Display message in scrolling or stationary mode.	02	CO5
13	LLO13.1 Construct circuit to interface 4x4 matrix keypad LLO13.2 Write 'c' program to print keys on LCD	Interface 4x4 matrix keypad to 8051 microcontroller. Display keys on LCD.	02	CO5
14	LLO14.1 Construct circuit to interface ADC LLO14.2 Write 'c' program to display values on LCD	Interface ADC to 8051 microcontroller. Display potentiometer voltage on LCD.	02	CO5
15	LLO15.1 Construct circuit to interface DAC LLO15.2 Write 'c' program to generate wave patterns	Construct circuit to interface DAC to 8051 microcontroller. Generate square/ triangular wave and display on DSO.	02	CO5
16	LLO16.1 Construct circuit to interface relay LLO16.2 Write 'c' program to control relay switching	Interface relay to 8051 microcontroller. Control AC bulb ON/OFF using relay.	02	CO5
17	LLO17.1 Construct circuit to interface DC motor LLO17.2 Write 'c' program to control speed of DC motor	Interface DC motor to 8051 microcontroller. Control the speed of DC motor.	02	CO5
18	LLO18.1 Construct circuit to interface stepper motor LLO18.2 Write 'c' program to control speed of DC motor	Interface stepper motor to 8051 microcontrollers. Control speed/ direction/ step angle of stepper motor.	02	CO5

Embedded System Microcontrollers (IS23502)

Go	vernment Polytechnic, Mumbai	Instrum	entation Er	ngineering
19	LLO19.1 Construct circuit to interface DHT11/22 LLO19.2 Write 'c' program to read data from module	Interface Humidity/ soil moisture sensor DHT11/22 module with Arduino.	02	CO5
20	LLO20.1 Construct circuit to interface Ultrasonic module LLO20.2 Write 'c' program to read data from module	Implement Ultrasonic Range Finder/level controller using Arduino Board.	02	CO5
21	LLO21.1 Construct circuit to interface Bluetooth module LLO21.2 Write 'c' program to read data from module	Interface Bluetooth module with Arduino board and transfer data to and fro.	02	CO5
22	LLO22.1 Construct circuit to interface DC motor LLO22.2 Write 'c' program to control speed of motor	Interface and control DC Motor Speed using Arduino Board.	02	CO5
23	LLO23.1 Construct circuit to interface LPG module LLO23.2 Write 'c' program to read data from module	Implement LPG Leakage Detector using Arduino Board.	02	CO5
24	LLO24.1 Construct circuit to interface RTC module LLO24.2 Write 'c' program to read data from module	Interface RTC module with Arduino board using I ² C to read time/date, also store data in SRAM.	02	CO5
25	LLO25.1 Construct circuit to interface servo motor LLO25.2 Write 'c' program to control position of servo motor	Interface and control servo Motor position using Arduino Board.	02	CO5
26	LLO26.1 Interface GPS module with Arduino using LLO26.2 Write 'c' program to receive location serially	Interface GPS module with Arduino board	02	CO5
27	LLO27.1 Interface 8266 wifi module with Arduino using LLO27.2 Write 'c' program to send/ receive data over wifi	Interface 8266 Wi-Fi module with Arduino board	02	CO5
28	LLO28.1 Interface load cell with Arduino using LLO28.2 Write 'c' program to measure and display weight	Interface load cell module with Arduino board	02	CO5
29	LLO29.1 Interface RTD/TC with Arduino using LLO29.2 Write 'c' program to measure and display temperature	Interface RTD/ thermocouple with Arduino board	02	CO5
30	LLO30.1 Construct circuit to interface required for application LLO30.2 Write 'c' program to	Micro project on mentioned input/output/module-based applications.	02	CO5
		ory and should be chosen such that all CO	••••	

Note: Minimum 20 experiments are compulsory and should be chosen such that all COs will be covered.

VI. Suggested Micro Project / Activities for Specific Learning / Skills Development (Self-Learning):

Microproject: - Students should select microproject in consultation with faculty.

Following are few topics for reference, students can choose any other applications.

- 1. Measure distance using ultrasonic module and 8051 microcontroller. Display distance on LCD.
- 2. Measure LPG gas concentration using LPG module and 8051 microcontroller. Display distance on LCD.
- 3. Transfer messages using Bluetooth module and 8051 microcontroller. Display distance on LCD.
- 4. Measure temperature using DHT11/22 module and 8051 microcontroller. Display distance on LCD.
- 5. Measure humidity using DHT11/22 module and 8051 microcontroller. Display distance on LCD.
- 6. Transfer messages using GSM module and 8051 microcontroller. Display distance on LCD.
- 7. Measure time/date using RTC module and 8051 microcontroller. Display distance on LCD.
- 8. Build digital watch using RTC module and Arduino uno/nano.
- 9. Build water level control system using Arduino.
- 10. Build temperature control system using Arduino.
- 11. Build automatic door opening/ closing system using Arduino.

VII. Specification Table:

Unit No	Taxia Titla	Distribution of Theory Marks					
	Topic Title	R Level	U Level	A Level	Total Marks		
1	Basics of Embedded Systems	04	04	02	10		
2	8051 Architecture	04	06	04	14		
3	AVR Microcontroller	02	04	04	10		
4	Memory System and Peripherals	02	04	04	10		
5	I/O Interfacing	02	06	08	16		
	Total Marks	5 14	24	22	60		

VIII. Assessment Methodologies/Tools:

Formative assessment (Assessment for Learning)

- Rubrics for continuous assessment based on attendance, process and product related performance indicators. (25 Marks)
- Rubrics for continuous assessment of self-learning assignments/ micro project/ activities based on process and product related performance indicators. (25 Marks)

Summative Assessment (Assessment of Learning)

- Rubrics for assessment based on laboratory process and product related performance indicators. (25 Marks)
- End of the term theory examination. (60 Marks)

Course	Programme Outcomes (POs)							Programme Outcomes (POs)	
Out- comes (COs)	PO-1 Basic and Discipline Specific Know- ledge	PO-2 Problem Analysis	PO-3 Design/ Develop- ment of Solutions	PO-4 Engi- neering Tools, Experime- ntation	PO-5 Engi- neering Practices For Society, Sustain- ability and Environ- ment	PO-6 Project Manage -ment	PO-7 Life Long Learn- ing	PSO - 1	PSO - 2
CO1	1			POLY	EC-9		1	2	
CO2	1		< `_	1	1	2	1		2
CO3	1		-/2	1	1	2	1		2
CO4	1		1	1	1	2	1	2	
CO5	1	3	2	2	3	3	1		2

Suggested Learning Materials / Rooks

Sr. No.	Title	Author, Publication, Edition and Year of Publication	ISBN NO.
1	The 8051 Microcontroller: Architecture, programming and applications	Kenneth J. Ayala, Cengage Learning, 3rd edition, 2005	978-1401861582
2	The 8051Microcontroller and Embedded System using assembly and C	Muhammad Ali Mazidi, Janice Gillispe Mazidi, Rlin D. McKinlay, Pearson/Prentice Hall New Delhi, 2nd edition, 2008	978-8131710265
3	Microcontroller Theory and application	Ajay V. Deshmukh, McGrawHill New Delhi, 1st edition, 2011	978-0070585959
4	Microprocessors and Microcontrollers: Architecture, Programming and System Design	Krishna Kant, PHI New Delhi, kindle edition, 2016	978-8120331914
5	An Embedded Software Primer	David E. Simon, Addison-Wesley Professional, 1st edition, 1999	978-0201615692
6	Introduction to Embedded Systems	Shibu K V, McGraw Hill Education India Private Limited; 2nd edition, 2017	978-9339219680
7	Embedded Systems	B Kanta Rao, Prentice Hall (I), 1 st edition, 2011	978-8120340817
8	Embedded System Design	Steve Heath, Newnes, 2nd edition, 2002	978-0750655460
9	Arduino for Beginners: Essential Skills Every Maker Needs	John Baichtal, Que Publishing, 1 st edition, 2013	978-0789748836
10	Introduction to Arduino: A piece of cake!	Alan G. Smith, CreateSpace Independent Publishing Platform, 1 st edition, 2011	978-1463698348

Embedded System Microcontrollers (IS23502)

Sr. No.	Link / Portal	Description
1	https://nptel.ac.in/courses/108105102/ [week 5 onwards video lectures]	Microprocessor and Microcontroller systems
2	http://www.circuitstoday.com/8051-microcontroller	8051 Microcontroller Basics
3	https://www.mikroe.com/ebooks/architecture-and- programming-of-8051-mcus/introduction	8051 Microcontroller Architecture
4	https://www.intorobotics.com/8051-microcontroller- programming-tutorials-simulatorscompilers-and- programmers	Current trends in embedded and robotics
5	https://nptel.ac.in/courses/108/105/108105057/	Embedded System Lectures
6	https://www.tutorialspoint.com/embedded_systems/i ndex.htm	Embedded System overview/ notes
7	https://www.tutorialspoint.com/arduino/index.htm	Arduino Tutorials

XII. Academic Consultation Committee/Industry Consultation Committee:

Sr. No.	Name	Designation	Institute/Organization
1	Mr. Mudassar Khopatkar	Chief Executive Officer	PCE consulting and engineers LLP, Chandivali, Mumbai
2	Mr. Praveen Veer	Lecturer in Electronics	SNDT Polytechnic, Santacruz, Mumbai
3	Mr. S. G. Thube	Sr. Lecturer in Instrumentation	Government Polytechnic, Mumbai
4	Mr. Firoz S. Bagwan	Lecturer in Instrumentation	Government Polytechnic, Mumbai
		ESTD.196	

Coordinator, Curriculum Development, Department of Instrumentation Engg.

Head of Department Department of Instrumentation Engg.

Incharge, Curriculum Development Cell Government Polytechnic, Mumbai

Principal Government Polytechnic, Mumbai

Progra	Programme: Diploma in Instrumentation Engineering (E&C) (Sandwich Pattern)												
Course Code:IS23201 Course Title: Power Plant Instrumentation													
Compulsory/Optional: Optional													
Learn	ing Sche	me and	Credits					А	ssessmen	nt Schei	me		
			~ **			FA	-ТН	SA-TH (2:30	FA-PR	SA-			
CL	TL	LL	SLH	NLH	Credits	T1	T2	Hrs.)	111-11	PR	OR	SLA	Total
3		2	1	6	3	20	20	60	25			25	150

Total IKS Hrs. for course: -- Hrs.

Abbreviations: CL-Class Room Learning, TL-Tutorial Learning, LL-Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA-Formative Assessment, SA-Summative assessment, SLA-Self Learning Assessment

Legends: @Internal Assessment, #External Assessment, *#Online Examination, @\$Internal Online Examination

Note:

- 1. FA-TH represents addition of two class tests 20 marks each conducted during the term.
- 2. FA-PR represents tutorial/practical term work of 25 Marks.
- 3. SLA represents self-learning Assessment of 25 Marks.
- 4. SA-TH represents the end term theory examination of 60 Marks.

I. Rationale:

A power plant instrumentation course teaches students about the instruments and control systems used to generate and control electricity. The course covers a range of topics, including - Power generation: The different methods of power generation, including thermal, hydro, nuclear, solar, tidal, bio-gas and wind. Instrumentation: The types of instruments used for measurement and analysis to monitor the electrical power generation process.

II. Industry/Employer Expected Outcome:

The aim of this course is to attain the following industry/ employer expected outcome through various teaching learning experiences:

"Describe the electrical power generation process with its Instrumentation and control to produce electricity effectively and efficiently".

III. Course Outcome: Students will be able to achieve & demonstrate the following COs on completion of course based learning.

CO1	Express the basics of thermodynamics / thermal process
CO2	Demonstrate Steam based electric power generation by various energy sources
CO3	Describe main auxiliaries of thermal power plant for e.g. boiler, turbine, Condenser and Cooling
CO4	Discuss the Nuclear Power generation, and its safety and non-conventional electric power generation
CO5	Identify an instrumentation required for steam power plants

Government Polytechnic, Mumbai IV. Course Content Details:

	e Content Details:	
Unit No.	Theory Learning Outcomes (TLO's) aligned to CO's	Topics/Sub-topics
No.	 (TLO's) aligned to CO's TLO1.1 Enlist and define various law of thermodynamics. TLO1.2 Demonstrate the law of conservation of Energy TLO1.3 Explain the various cycle use in electrical power generation 	 Unit-I Introduction to basic thermal process 1.1 Zeroth Law of Thermodynamics 1.1 Energy 1.1.2 Work 1.1.3 Specific heat 1.1.4 Perfect gas 1.2 Boyle's Law and Charles Law 2.1 Boyle's Law-1 and Law-2 2.2 General & Combined equation 3 Universal gas constant 2.4 Avogadro's Law 1.3 First Law of Thermodynamics 1.3.1 Internal Energy 2.2 Adiabatic work 1.4 Law of conservation of Energy 1.4.1 Constant Volume process 1.4.3 Constant temperature
	Course Outcome: CO1 Teaching Ho	1.4.4 Enthalpy1.5 Second Law of thermodynamics1.5.1 Heat Engine1.6 Various Cycle: Carnot, Rankine, regenerative and reheat cycleours: 08 hrs.Marks: 10
		Unit-II Basic of Electrical Power generation
2	 TLO2.1 Define energy and power TLO2.2 Classify and compare sources of energy TLO2.3 Enlist and briefly write / explain the various principle of electrical power generation TLO2.4 Describe combustion theory of coal. TLO2.5 Draw the layout of steam power plant and requirement of it. TLO2.6 Describe the site selection criteria of thermal power plant. 	 2.1 Introduction of Energy and Power 2.2 Sources of Energy: Fuels, Energy stored in water, nuclear energy, Wind power, Solar Energy, Tidal energy, Geothermal Energy, Thermoelectric power 2.3 Principal Types of Power Plant: Steam Power Plant, Internal Combustion Engine Plants, Gas Turbine Plant, Hydroelectric Plants 2.4 Combustion of Fuels: Combustion Chemistry, Coal Analysis, Measurement & control of air flow of combustion 2.5 Layout of steam Power Plants 2.6 Essential requirement of steam power plants 2.7 Selection of site of steam power plant
0	6	ours: 12 hrs. Marks: 14
3		 Unit-III Major Auxiliaries of Thermal Power Plant and Introduction to Hydro-electric Power Plant 3.1 Generator and Exciter 3.2 Fuel Handling, Fuel Flow measurement and Mill Control 3.3 Ash handling 3.4 Chimney draughtand Fan Control
Power	operation. TLO3.5 Describe the cooling Ponds & tower	3.5 Boiler: Furnace draft measurement & control and its performance pproved copy) P-23 Scheme

TLO4.6 Compare the economics and safety measures of Nuclear Power plant with others4.9 Safety measures of Nuclear Power plantTLO4.7 List and describe working of non- conventional electrical power generation10 Introduction to nonconventional power generationCourse Outcome: CO4Teaching Hours: 08 hrsMarks: 12TLO5.1 Value and use Instrumentation in steam power plantUnit-V Special Instrumentation of Steam Power plantTLO5.2 Demonstrate the vibration and turbo- visory instrumentsUnit-V Special Instrumentation in Power plantTLO5.3 Demonstrate the significance of gas analyzer instrumentsSafety measures of Nuclear Power plantTLO5.4 Value and use of steam and water analysis instruments5.4 Steam and water analysis systemTLO5.5 Demonstrate the significance of analysis instruments5.4 Steam and water analysis system5.5 Sample conditioning system5.6 Blow down and dosing control system	Government Polytechnic, Mumbai	Instrumentation Engineering
TLO3.8 Describe the working principle of Hydro-electric power plant.1.0000 monors of Nuclear Powers plants3.9Cooling Ponds and towers3.10Feed water treatments & Control3.11Advantages & disadvantages of steam power plants3.12Introduction of Hydro-electric Power Plant4TLO4.1 Define terms and terminology Nuclear Power generation4TLO4.2 Describe the working of Nuclear Power SystemTLO4.3 Define, Enlist and describe nuclear reactorsTLO4.4 Enlist & describe the main components of Nuclear Power PlantTLO4.5 Enlist the Site Selection and material selection criteria of Nuclear Power Plant.TLO4.6 Compare the economics and safety measures of Nuclear Power plant with othersTLO4.7 List and describe working of non- conventional electrical power generation5TLO5.1 Value and use Instrumentation in steam power plant7TLO5.1 Value and use of steam and water analyzer instrumentsTLO5.4 Value and use of steam and water analyzei instrumentsTLO5.5 Demonstrate the significance of gas analyzer instrumentsTLO5.5 Demonstrate the significance of analyzei instruments5 Demonstrate the significance of analyzei instruments5 Demonstrate the significance of <b< th=""><th>TLO3.7 Enlist the pros and cons of steam</th><th>3.7 Steam Nozzles</th></b<>	TLO3.7 Enlist the pros and cons of steam	3.7 Steam Nozzles
Course Outcome: CO3Teaching Hours: 10 hrs.Marks: 144TLO4.1 Define terms and terminology Nuclear Power generationUnit-IV Nuclear Power Plant and Introduction Nonconventional Power generation4TLO4.2 Describe the working of Nuclear Power SystemI General aspect of Nuclear Engineering 4.2 Nuclear power system7TLO4.3 Define, Enlist and describe nuclear reactorsA.1 General aspect of Nuclear Engineering 4.2 Nuclear power system7TLO4.4 Enlist & describe the main components of Nuclear Power Plant.Nuclear Power Plant7TLO4.5 Enlist the Site Selection and material selection criteria of Nuclear Power Plant.A.4 Main components of Nuclear Power Plant7TLO4.6 Compare the economics and safety measures of Nuclear Power plant with othersNuclear Power plant7TLO4.7 List and describe working of non- conventional electrical power generationSafety measures of Nuclear Power plant6TLO5.1 Value and use Instrumentation in steam power plantTLO5.2 Demonstrate the significance of gas analyzer instrumentsUnit-V Special Instrumentation in Power plant7TLO5.4 Value and use of steam and water analysis instrumentsCourse Outcome: CO4Teaching Hours: 08 hrsMarks: 127TLO5.4 Value and use of steam and water analysis instrumentsS.3 Gas Analyzers, Zirconium, Paramagnetic, Optical & Eleconchenical6Blow down and dosing control system7Someonstrate the significance of analysis instrumentsS.5 Sample conditioning system	TLO3.8 Describe the working principle of	3.9 Cooling Ponds and towers3.10 Feed water treatments & Control3.11 Advantages & disadvantages of steam power
4 TLO4.1 Define terms and terminology of Nuclear Power generation Unit-IV Nuclear Power Plant and Introduction 4 TLO4.1 Define terms and terminology of Nuclear Power generation Unit-IV Nuclear Power generation 1 104.2 Describe the working of Nuclear Power System 1.1 General aspect of Nuclear Engineering 4 104.3 Define, Enlist and describe nuclear reactors 1.1 General aspect of Nuclear Engineering 7 104.4 Enlist & describe the main components of Nuclear Power Plant 3.1 Nuclear neactors 7 104.4 Enlist & describe the main components of Nuclear Power Plant 4.3 Nuclear reactors 7 104.5 Enlist the Site Selection and material selection criteria of Nuclear Power plant 4.4 Main components of Nuclear Power Plant 4.5 Selection of material for reactors components of Nuclear Power plant 4.5 Selection of material for reactors components 7 Nuclear Power Plant 4.5 Nuclear Power Plant site selection 4.8 Application & Economics of Nuclear Power plant 4.9 Safety measures of Nuclear Power plant 5 TLO5.1 Value and use Instrumentation in steam power plant 4.10 Introduction to Instrumentation in Power plant 5.1 Sologia Analyzer instruments 5.3 Gas Analyzers, Zirconium, Paramagnetic, Optical & Elecorchemical 5.4	Course Outcome: CO3 Teaching F	
measures of Nuclear Power plant with others4.10 Introduction to nonconventional power generationTLO4.7 List and describe working of non- conventional electrical power generation4.10 Introduction to nonconventional power generationCourse Outcome: CO4Teaching Hours: 08 hrsMarks: 12TLO5.1 Value and use Instrumentation in steam power plantUnit-V Special Instrumentation of Steam Power plantTLO5.2 Demonstrate the vibration and turbo- visory instrumentsUnit-V Special Instrumentation of Steam Power plantTLO5.3 Demonstrate the significance of gas analyzer instrumentsSa Analyzers, Zirconium, Paramagnetic, Optical & ElectrochemicalTLO5.4 Value and use of steam and water analysis instruments5.4 Steam and water analysis systemTLO5.5 Demonstrate the significance of analysis instruments5.4 Steam and water analysis system5.5 Sample conditioning system5.6 Blow down and dosing control system	 4 Nuclear Power generation TLO4.2 Describe the working of Nuclear Power System TLO4.3 Define, Enlist and describe nuclear reactors TLO4.4 Enlist & describe the main components of Nuclear Power Plant TLO4.5 Enlist the Site Selection and material selection criteria of Nuclear Power Plant. TLO4.6 Compare the economics and safety 	 Nonconventional Power generation 4.1 General aspect of Nuclear Engineering 4.2 Nuclear power system 4.3 Nuclear reactors 4.4 Main components of Nuclear Power Plant 4.5 Selection of material for reactors components 4.6 Advantages of Nuclear Power Plants 4.7 Nuclear Power Plant site selection 4.8 Application & Economics of Nuclear Power plant
 TLO5.1 Value and use Instrumentation in steam power plant TLO5.2 Demonstrate the vibration and turbovisory instruments TLO5.3 Demonstrate the significance of gas analyzer instruments TLO5.4 Value and use of steam and water analysis instruments TLO5.5 Demonstrate the significance of Solution and turbovisory Instruments Solution and Turbovisory Instrument	with others TLO4.7 List and describe working of non- conventional electrical power generation	4.10 Introduction to nonconventional power generation such as Wind, Tidal, Solar and biogas.
 5 steam power plant TLO5.2 Demonstrate the vibration and turbovisory instruments TLO5.3 Demonstrate the significance of gas analyzer instruments TLO5.4 Value and use of steam and water analysis instruments TLO5.5 Demonstrate the significance of TLO5.5 Demonstrate the significance of Source of the significance of Source of the significance of TLO5.5 Demonstrate the significance of Source of the significance o		Iours: 08 hrs Marks: 12
sustam	 5 steam power plant TLO5.2 Demonstrate the vibration and turbo- visory instruments TLO5.3 Demonstrate the significance of gas analyzer instruments TLO5.4 Value and use of steam and water analysis instruments TLO5.5 Demonstrate the significance of blown down and dosing control system TLO5.6 Describe the analyzer to monitor and control the air pollution due to 	 5.2 Vibration and Turbo-visory Instruments 5.3 Gas Analyzers, Zirconium, Paramagnetic, Optical & Electrochemical 5.4 Steam and water analysis system 5.5 Sample conditioning system 5.6 Blow down and dosing control system 5.7 Analyzers for Air Pollution monitoring and control 5.8 NOx Reduction and Advance soot blower Control 5.9 Traditional Instrumentation Control system
Course Outcome: CO5 Teaching Hours: 07 hrs Marks: 10		rs: 07 hrs Marks: 10

Note: Any one unit from 1 to 5 will be preferably taught by Alumni of Government Polytechnic Mumbai

V. Laboratory Learning Outcome and Aligned Practical/Tutorial Experiences.

Sr No	Practical/Tutorial/Laboratory Learning Outcome (LLO)	Laboratory Experiment/Practical Titles / Tutorial Titles	Number of Hrs.	Relevant Cos
1	LLO1.1 Use the Rankine cycle to find the Rankine & relative efficiency by considering different pressure of steam	1 10 1000 000 000 000 0000000000000000	02	CO1
2	LLO2.1 Demonstrate the function and significance of different auxiliary of	To study detailed layout of thermal power plant	02	CO2

Government Polytechnic, Mumbai

Instrumentation Engineering

00			Instrumentul	ten Bugu	0011118
	Co	bal based power plant			
3	fir	alue and use the different formulae to nd the efficiency of boiler and heat lance sheet.	To prepare heat balance sheet for a given Boiler	02	CO3
4	sig	emonstrate the function and gnificance of different auxiliary of aclear power plant	To study detailed layout of nuclear power plant	02	CO4
5		escribe the vibration measurement of eam Turbine measurement	To Study vibration measurement of steam turbine	02	CO5
6		alue and use the different formulae to nd the efficiency of Steam turbine	To find the power output and efficiency of a steam turbine.	02	CO 3
7		raw the low-pressure boiler details hematics of coal base power plant	To study low pressure Boiler their mountings and accessories	02	CO 3
8		istinguish two types of steam turbine used on construction	To study working of impulse and reaction Turbine.	02	CO 3
9	sig	emonstrate the function and gnificance of different auxiliary of ydro-electric power plant	To study the detailed layout of Hydraulic power plant	02	CO 3
10		emonstrate the function and gnificance of different Nuclear eactors	To sketch the different types of nuclear reactors	02	CO 4
11		emonstrate the function and gnificance of different auxiliary of ind power plant.	To draw and study the detailed layout of Wind power plant	02	CO 4
12		ompare the different electric power enerating plants.	To Prepare a comparison chart for power plants based on their types, location, and selection.	02	CO 2
13		escribe the various aspect of Electric over generating plant.	To prepare technical report on any one power plant	02	All
14	LLO14.1 Ex	xplain the principle of CO/CO ₂ easurement in thermal power plant	TostudyCO/CO ₂ measurementin thermal power station	02	CO 5
15		alue and use of oxygen measurement thermal power station	To study oxygenmeasurement of thermal power plant.	05	CO 5

Note: Minimum 12 experiments are compulsory and should be chosen such that all COs will be covered.

VI. Suggested MicroProject/Assignment/ActivitiesforSpecificLearning/SkillsDevelopment (Self-Learning):

Micro Project:

- i. Prepare model and chart of thermal process
- ii. Preparation of model of thermal power Plant/boiler
- iii. Preparation of Hydro-electric power plant model
- iv. Preparation of wind mill model
- v. Build and test Solar Power Plant circuit

VII. Specification Table:

Unit	Topic Title	Distribution of Theory Marks				
No	горіс тше	R Level	U Level	A Level	Total Marks	
1	Introduction to basic thermal power plant	02	06	02	10	

Gover	nment Polytechnic, Mumbai	Instrumentation Engineering			
2	Basic of Electrical Power Generation	04	06	04	14
3	Major Auxiliaries of Thermal Power Plant and Introduction to Hydro-electric Power Plant	04	06	04	14
4	Nuclear Power Plant and Introduction to Non- conventional Power Generation		06	02	12
5	Special Instrumentation of Steam Power plant	02	06	02	10
	Total Marks	16	30	14	60

VIII. Assessment Methodologies/Tools:

Formative assessment (Assessment for Learning)

- Rubrics for continuous assessment based on attendance, process and product related performance indicators. (25 Marks)
- Rubrics for continuous assessment of self-learning assignments/ micro project/ activities based on process and product related performance indicators. (25 Marks)

Summative Assessment (Assessment of Learning)

• End of the term theory examination. (60 Marks)

IX. Suggested COs-Pos Matrix Form

~	Programme Outcomes (POs)							Programme Outcomes (POs)	
Cours e Out- comes(COs)	PO- 1Basic and Disciplin e Specific Know- ledge	PO-2 Proble m Analysi s	PO-3 Design/ Develop- ment of Solutions	PO-4 Engi- neering Tools, Experim -entation	PO-5 Engineering Practices For Society, Sustain- ability and Environ- ment	PO-6 Project Manage -ment	PO-7 Life Long Learn- ing	PSO -1	PSO -2
CO1	1	1 5	1	1	-//	4			
CO2	2	1	2	1				2	2
CO3	2	1	2	Now	FDGE "			2	2
CO4	2	1	1						
CO5	3	2	1					3	1

X. Suggested Learning Materials/Books

Sr.	Title Author, Publication, Edition and Dublication Dublication		ISBN NO.
No.		Publication	
1	A text book of Power Plant	R.K. Rajput, Pearson Education, 11th edition,	978-8131802557
	Engineering	2015	978-8131802337
2	Power Plant Instrumentation	Swapan Basu and Ajay Kumar Debnath,	978-0128195048
2	and Control Handbook	Academic Press, Elsevier, Second Edition	976-0128193048

Power Plant Instrumentation (IS23201)

Govern	nment Polytechnic, Mumbai	Instrumentation Engineer	
3	Power Plant Engineering	S. Domkundwar, S.C. Arora, and A.V. Domkundwar, Dhanpat Rai & Co.(P) Limited; Eighth edition (2016)	978-8177001952
4	Power Plant Engineering	P.K. Nag, McGraw Hill Education; Fourth edition (1 July 2017)	978-9339204044
5	Non-conventional energy resources	B. H. Khan, McGraw Hill Education India Private Limited; Third edition (1 July 2017)	978-9352601882

XI. Learning Websites & Portals

Sr. No.	Link/Portal	Description
1	https://archive.nptel.ac.in/courses/112/107/112107291/	This is NPTEL Video Link of IIT Roorki
2	https://onlinecourses.nptel.ac.in/noc24_me57/preview	This is NPTEL video Link of IIT Guwahatti
3	https://youtu.be/9njuNoLIADY?si=k3-ctPPaJWcLIdUz	Prof. Ravi Kumar, IIT Roorki, Lecture on PPI

XII.Academic Consultation Committee/Industry Consultation Committee:

Sr. No.	Name	Designation	Institute/Organization
1	Er. Mrs. Kanchan Shiyale	Asstt Engineer (MSPGCL / Maha- Genco, Mumbai)	Maharashtra State Power Generation Company Ltd, Mumbai (M.S.)
2	Prof. Gaurav Dharme	Lecturer, Mechanical Engg.	Agnel Technical College, Bandra, Mumbai
3	Prof. K.U. Dawane	Lecturer in Instrumentation Engg	Government Polytechnic, Bandra
4	Dr. B. B. Sul	HOD, Instrumentation Engg	Government Polytechnic, Bandra

Coordinator, Curriculum Development, Department of Instrumentation Engg.

Head of Department Department of Instrumentation Engg.

In-charge, Curriculum Development Cell Government Polytechnic, Mumbai

Principal Government Polytechnic, Mumbai

Prog	Programme: Diploma in Instrumentation Engineering(E&C) (Sandwich Pattern)												
Course Code: IS23202 Course					Title:	Build	ing Auton	nation					
Com	Compulsory / Optional: Optional												
Learı	ning Sch	eme and	Credits					A	ssessme	nt Sche	me		
					FA-TH SA-TH FA- SA-								
CL	TL	LL	SLH	NLH	Credits	T1	T2	(2:30 Hrs.)	PR	PR	OR	SLA	Total
3		2	1	6	3	20	20	60	25			25	150

Total IKS Hrs. for course: -- Hrs.

Abbreviations: CL- Class Room Learning, TL- Tutorial Learning, LL- Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SLA- Self Learning Assessment

Legends: @ Internal Assessment, # External Assessment, *# Online Examination, @\$ Internal Online Examination

Note:

- 1. FA-TH represents addition of two 20 marks class tests conducted during the term.
- 2. FA-PR represents tutorial/practical term work of 25 Marks.
- 3. SLA represents self-learning Assessment of 25 Marks.
- 4. SA-TH represents the end term theory examination of 60 Marks.

I. Rationale:

Building automation systems are essential for managing and optimizing the operation of various sub-systems in commercial, residential, and industrial buildings. There is a critical need for professionals who can ensure these systems work efficiently. This course will help the students to understand the various aspects of different automation systems involved in smart buildings.

II. Industry / Employer Expected Outcome:

The aim of this course is to help the students to attain the following industry related competency through various teaching learning experiences.

i.Demonstrate the functioning of various systems.

ii.Operate and maintain the systems involved in a building automation system.

III. Course Outcomes:

Students will be able to achieve & demonstrate the following COs on completion of course based learning

CO1	Identify various components of Building management system.
CO2	Explain the operation of various subsystems in BAS.
CO3	Demonstrate the operation of different types of HVAC equipment and system.

CO4	Understand DDC fundamentals of BMS.
CO5	Describe the advanced features used for effective facility control.

IV. Course Content Details:

Unit No.	Theory Learning Outcomes (TLO's) aligned to CO's	Topics / Sub-topics
1	 TLO1.1 Understand the concept of building automation system TLO1.2 Identify various components of building automation system TLO1.3 Demonstrate the features of building automation system TLO1.4 Discuss the benefits of building automation system 	 Unit-I Introduction 1.1 Concept of Building Automation. 1.2 Components and subsystems of building management system (BMS). 1.3 Features of Building management system. 1.4 Benefits of Building management system.
	Course Outcome: CO1	Teaching hours: 3 hrs. Marks:08
2	 TLO2.1 List the types of fire alarm system. TLO2.2 Draw the architecture of FAS, and explain the function of each block. TLO2.3 Describe the working principle of sensors/detectors used in FAS. TLO2.4 Draw the block diagram of CCTV System and explain function of each block. TLO2.5 Differentiate between DVR and NVR systems. TLO2.6 Draw block diagram of access control system and explain function of each block. 	 Unit-II BAS Subsystems 2.1 Fire Alarm System (FAS) -Introduction, types of fire alarm system and applications. Architecture of FAS, Working principle of FAS. Components Fire and smoke detector sensors, Fire alarm control panel, annunciator panel, suppression systems, and Notification devices. 2.2 CCTV and Surveillance system - Overview of CCTV system and applications, Block diagram of CCTV system, Types of CCTV camera, Video management system -Digital video recorders (DVR) vs Network video recorders (NVR) 2.3 Access control systems - Overview of access control systems, features and applications. Block diagram of Access control systems, Basic components of an Access control systems.
	Course Outcome: CO2	Teaching hours: 14 hrs Marks:16
3	TLO3.1 Define various air propertiesTLO3.2 Read the various air conditioning processes on psychrometric chart	 Unit-III HVAC systems 3.1 Air Properties: Dry bulb temperature, Wet bulb temperature, Relative humidity, Humidity ratio, Dew Point temperature, Enthalpy, Specific Volume. (definitions only)
	TLO3.3 Classify and demonstrate the operation of various types of HVAC system	3.2 Introduction to psychrometric chart: Construction of Psychometric chart, plotting the HVAC processes on the psychrometric chart,

4 TLO4.1 Draw and explain hierarchical configuration of controllers in BAS. Unit - IV Direct digital control (DDC) 4 TLO4.2 Describe types of controllers and controller software used in DDC system. Unit - IV Direct digital control (DDC) 7 TLO4.3 Describe energy management system TLO4.4 Explain various DDC operators available in typical DDC systems. 4.1 8 TLO4.4 Explain various DDC operators available in typical DDC system. 4.3 Controller Software, energy management software. 4.4 TLO4.4 Explain various DDC operators available in typical DDC systems. 4.4 Typical DDC Operators: sequence, reversing, ratio, analog controlled digital output, digital controlled digital output, digital controlled analog output, maximum input, Minimum input Delay, Ramp. Course Outcome: CO4 Teaching hours: 7 hrs Marks:10	0010111	ment i orgiechnic Mumbul	Instrumentation Engineering
 TLO4.1 Draw and explain hierarchical configuration of controllers in BAS. TLO4.2 Describe types of controllers and controller software used in DDC system. TLO4.3 Describe energy management system TLO4.4 Explain various DDC operators available in typical DDC systems. Course Outcome: CO4 TLO 5.1 Explain the concept of optimal control TLO 5.2 Describe features for optimal control TLO 5.3 State the significance of information management features available in BAS. TLO 5.4 Describe features for information management in FMS 		various units of HVAC system TLO3.5 Discuss the control strategies	 conditioning system, All Air system, All water system, Air – water system, (block diagram, working, advantages and disadvantages) 3.4 Components/ unit operations of HVAC system: Boiler, Chiller, Air-handling unit (AHU), Air terminal unit (ATU), Variable air volume equipment (VAV), HVAC Zones and Rooms (diagram and operation) 3.5 Control strategies for occupants comfort: Control methods, Zone control, temperature control, humidity control, fans volume and pressure control,
 TLO4.1 Draw and explain hierarchical configuration of controllers in BAS. TLO4.2 Describe types of controllers and controller software used in DDC system. TLO4.3 Describe energy management system TLO4.4 Explain various DDC operators available in typical DDC systems. TLO4.4 Explain various DDC operators available in typical DDC systems. Course Outcome: CO4 Teaching hours: 7 hrs TLO 5.1 Explain the concept of optimal control TLO 5.1 Explain the concept of optimal control in FMS TLO 5.2 Describe features for optimal control in FMS TLO 5.3 State the significance of information management features available in BAS. TLO 5.4 Describe features for information management in FMS 		Course Outcome: CO3 To	eaching hours: 14 hrs Marks:16
Course Outcome: CO4Teaching hours: 7 hrsMarks:10TLO 5.1 Explain the concept of optimal controlUnit - V Advance Technology for effective facility ControlTLO 5.2 Describe features for optimal control in FMSUnit - V Advance Technology for effective facility ControlTLO 5.3 State the significance of information management features available in BAS.Unit - V Advance Technology for effective facility ControlTLO 5.4 Describe features for information management in FMSInformation Management Features: Summaries, Password, Alarm Report, Time Scheduling, Trending, Totalization, Graphics.		configuration of controllers in BAS. TLO4.2 Describe types of controllers and controller software used in DDC system. TLO4.3 Describe energy management system TLO4.4 Explain various DDC operators	 Fundamentals of BMS 4.1 Hierarchical system configuration. 4.2 Types of Controllers - Zone level controllers, system level controllers, operation level processor and management level processor. 4.3 Controller Software- operating Software, applications software, energy management software. 4.4 Typical DDC Operators: sequence, reversing, ratio, analog controlled digital output, digital controlled analog output, analog controlled analog output, Maximum input, Minimum input,
 Control TLO 5.2 Describe features for optimal control in FMS TLO 5.3 State the significance of information management features available in BAS. TLO 5.4 Describe features for information management in FMS Control Control S.1 Features for optimal Control: optimal START / optimal STOP (optimal run time), Load rolling, Demand limiting, Economizer switchover, Supply air reset (SAR), Condenser water reset, Chiller sequencing. S.2 Information Management Features: Summaries, Password, Alarm Report, Time Scheduling, Trending, Totalization, Graphics. 	I	Course Outcome: CO4	
Course Outcome: CO5Teaching hours: 7 hrsMarks:10	T T	 control LO 5.2 Describe features for optimal control in FMS LO 5.3 State the significance of information management features available in BAS. LO 5.4 Describe features for information 	 5.1 Features for optimal Control: optimal START / optimal STOP (optimal run time), Load rolling, Demand limiting, Economizer switchover, Supply air reset (SAR), Condenser water reset, Chiller sequencing. 5.2 Information Management Features: Summaries, Password, Alarm Report, Time Scheduling,
	Co	ourse Outcome: CO5 Tea	ching hours: 7 hrs Marks:10

V. Laboratory Learning Outcome and Aligned Practical / Tutorial Experiences.

Sr No			Laboratory Experiment / Practical Titles / Tutorial Titles	Number of Hrs.	Relevant COs	
1	LLO1.1	Demonstrate the architecture of BMS	Architecture and components of BMS.	02	CO1	
2	LLO2.1	Install CCTV system	Closed-circuit television (CCTV) systems (connections of camera/DVR/NVR, installation of IP based camera.)	02	CO2	
3	LLO3.1	Troubleshoot the faults in CCTV system	Faults in the given CCTV system.	02	CO2	
4	LLO4.1	Demonstrate the operation of Fire alarm systems	Fire alarm systems.	02	CO2	
5	LL05.1	Test the sensors and Fire/smoke detectors	Types of Fire/smoke detectors	02	CO2	
6	LLO6.1	Install a single door access control system.	Access control system: Access control deployment at a typical door.	02	CO2	
7	LL07.1	Demonstrate the operation of HVAC system	Heating, Ventilation and Air-conditioning systems (HVAC)	02	CO2	
8	LLO8.1	Identify the type of HVAC system	Types of HVAC system	02	CO3	
9	LLO9.1	Test the Sensors used in HVAC System	Sensors used and maintenance of HVAC System	02	CO3	
10	LLO10.1	Identify the types of panels	BMS Control Panels and Alarm Monitors.	02	CO4	
11	LLO11.1	Demonstrate the operation of various DDC Operators in BMS	Typical DDC Operators in BMS.	02	CO4	
12	LLO12.1	Demonstrate the operation of energy Management system.	Energy Management system.	02	CO4	
13	LLO13.1	Test the features for optimal Control	Features for optimal Control.	02	CO5	
14	LLO14.1	Test the information management features	Information Management Features for effective facility Control.	02	CO5	
15	LLO15.1	Present the assigned topic	Preparation of power-point slides, by students, which may include videos, animations, pictures, graphics for better understanding of theory and practical work. The faculty will allocate chapters/ parts of chapters to groups of 3-4 students	02	ALL	

Note: Minimum 12 experiments/assignments are compulsory and should be chosen such that all COs will be covered.

VI. Suggested Micro Project / Assignment/ Activities for Specific Learning / Skills Development (Self-

Learning):

Assignments:

- i. Explain personal and equipment safety practices followed in your institutes.
- ii. Prepare an instrument index sheet for sensors/instruments used in HVAC system.
- iii. Prepare the specifications for boilers, chillers and humidifiers used for given industry/building.
- iv. Identify various components of AHU used in the given application.
- v. Visit a local mechanic shop of an AC mechanic and list out the tools he uses for AC maintenance.

Micro Project:

- i. Make a survey report of top BMS providers in market.
- ii. Build a circuit for fan motor (AC or DC) speed control.
- iii. Build and construct model for boiler used in HVAC.
- iv. Build a circuit for fire detection.
- v. Build a circuit for fire and smoke alarm system.
- vi. Build automatic door system for garage.
- vii. Design a scheme for automatic lighting control of your institute building.
- viii. Design a circuit for building safety using smoke detector.
- ix. Build a RFID based access control system.

Activities:

- i. Organize seminar on specific topic in the group of students and present in the class.
- ii. Prepare model Charts of various subsystems in BMS.

VII. Specification Table:

Unit		Distribution of Theory Marks					
No	Topic Title	R Level	U Level	A Level	Total Marks		
1	Introduction	2	4	2	08		
2	BAS Subsystems	4	8	4	16		
3	HVAC systems	4	8	4	16		
4	DDC fundamentals of BMS	2	4	4	10		
5	Advance Technology for effective facility Control	2	4	4	10		
	Total Marks	14	28	18	60		

VIII. Assessment Methodologies/Tools:

Formative assessment (Assessment for Learning)

- Rubrics for continuous assessment based on attendance, process and product related performance indicators. (25 Marks)
- Rubrics for continuous assessment of self-learning assignments/ micro project/ activities based on process and product related performance indicators. (25 Marks)

Summative Assessment (Assessment of Learning)

• End of the term theory examination. (60 Marks)

IX. Suggested COs - POs Matrix Form

Course	Programme Outcomes (POs)								Programme Outcomes (POs)	
Out- comes (COs)	PO-1 Basic and Discipline Specific Know- ledge	PO-2 Problem Analysis	PO-3 Design/ Develop- ment of Solutions	PO-4 Engi- neering Tools, Experime- ntation	Engi- neering Practices For Society, Sustain- ability and Environ- ment	PO-6 Project Manage -ment	PO-7 Life Long Learn- ing	PSO - 1	PSO - 2	
CO1	2		1	1	2		3	1	1	
CO2	2	3	3	3	2	2	3	2	1	
CO3	2	3	3	3	2	2	3	2	1	
CO4	2 -	3	3	3	2	1	3	2	1	
CO5	2	2	2	1	2	1	3	1	1	

X. Suggested Learning Materials / Books

Sr. No.	Title	Author, Publication, Edition and Year of Publication	ISBN NO.
1	Smart Buildings	Jim Sinopoli, Butterworth-Heinemann imprint of Elsevier,2 nd ed, 2010.	978-0978614409
2	Building Environment: HVAC Systems	AlanJ.Zajac, Johnson Controls, Inc.	978-0766821002
3	Understanding Building Automation system	Reinhold A. Carlson, Robert A.Di Giandomenico, First Edition	978-0876292112
4	Intelligent Building System	Albert Ting-pat So, Wai Lok Chan, Kluwer Academic, publisher, 3rd ed., 2012.	978-3319684611
5	Design of Special Hazards and Fire Alarm Systems	Robert Gagnon, Thomson Delmar Learning; 2nd edition, 2007	978-1418039509
6	HVAC Controls and Systems	Levenhagen, John I.Spethmann, Donald H McGraw-Hill Publication	978-0071786577
7	Process Control-Instrument Engineers Handbook	Bela G.Liptak, Chilton book co.	978-1483145020

XI. Learning Websites & Portals:

Sr. No.	Link / Portal	Description
1	https://nptel.ac.in/courses/108106022	Pdf notes
2	https://www.scribd.com/document/737283654/Automatic- Control-for-Commercial-Buildings- honeywell	Reference manual
3	https://pdfs.semanticscholar.org/presentation/11c9/9a40a4ff5 5687ada3b9a2a3a9f25b04b9631.pdf: HVAC	Research paper
4	https://customer.honeywell.com/resources/techlit/TechLitDo cuments/77-0000s/77-E1100.pdf: HVAC, BAS basics, DDC,controllersoftwares.	Controller's information
5	https://www.nsdcindia.org/scmp/assets/image/1179656187- CCTV_Installation_TechnicianEnglish.pdf	Pdf notes
6	http://www.schneider-electric.com/b2b/en	Website
7	http://www.automation.siemens.com/	Website
8	https://nsdcindia.org/building-automation-specialist	Website

XII. Academic Consultation Committee/Industry Consultation Committee:

Sr. No.	Name	Designation	Institute/Organization				
1	Mr. Shrikant Patil	Sr. Regional Manager	Source IT Group, Mumbai				
2	Dr. P. D. Sarawade	I/C Head of department (Lecturer in Instrumentation)	Govt. Polytechnic, Karad				
3	Mr. S. G. Thube	Lecturer in Instrumentation	Govt. Polytechnic, Mumbai				
4	Mr. K. U. Dawane	Lecturer in Instrumentation	Govt. Polytechnic, Mumbai				

Coordinator, Curriculum Development, Department of Instrumentation Engg. Head of Department Department of Instrumentation Engg.

In-charge, Curriculum Development Cell Government Polytechnic, Mumbai Principal Government Polytechnic, Mumbai

Course Code: IS23203 Course Title: Robotics and Automation Compulsory / Optional: Optional	Program	Programme: Diploma in Instrumentation Engineering (Sandwich Pattern)												
Compulsory / Optional: Optional	Course Code: IS23203 Course T					Title: Robotics and Automation								
	Compulsory / Optional: Optional													
Learning Scheme and Credits Assessment Scheme	Learning Scheme and Credits					Assessment Scheme								
SA-TH SA-							EA TH (2			FA- PR	SA-			
	CL T	ГL	LL	SLH	NLH	Credits			(2:30 Hrs.)		PR	OR	SLA	Total
3 2 1 6 3 20 20 60 25 25 150	3.		2	1	6	3	20	20	60	25			25	150

Total IKS Hrs. for course: --Hrs.

Abbreviations: CL- Class Room Learning, TL- Tutorial Learning, LL- Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, SLA- Self Learning Assessment

Legends: @ Internal Assessment, # External Assessment, *# Online Examination, @\$ Internal Online Examination

Note:

1.FA-TH represents addition of two 20 marks class tests conducted during the term.

2.FA-PR represents tutorial/practical term work of 25 Marks.

3.SLA represents self-learning Assessment of 25 Marks.

4.SA-TH represents the end term theory examination of 60 Marks.

5.SA-PR represents the end term Practical examination of 25 Marks

I. Rationale:

Robotics and automation are at the forefront of the Fourth Industrial Revolution, driving innovation in areas such as artificial intelligence (AI), machine learning, the Internet of Things (IoT), and advanced manufacturing. Robotics and Automation are transformative fields shaping the future of process industries, healthcare, transportation, and daily life. A curriculum in this domain equips instrumentation engineering students with the theoretical knowledge, practical skills, and ethical considerations necessary to deploy intelligent systems that improve efficiency, safety, and quality of life.

II. Industry Employer Expected Outcome:

The aim of this course is to help the student to achieve the following industry identified outcome through various learning experiences:

"Develop and maintain the robotic-based applications."

III. Course Outcomes: Students will be able to achieve & demonstrate the following COs on completion of course based learning

CO1	Interpret the basic terminology of robotic system			
CO2	Select sensors for various robotic applications			
CO3	Interpret the basic tools for vision signal processing			
CO4	O4 Develop simple programs for robot control			

Robotics and Automation (IS23203)

CO5

Maintain robotic system in various applications

IV. Course Content Details:

Unit No.	Theory Learning Outcomes (TLO's) aligned to CO's	Topics / Sub-topics
1		Unit-I Basics of Robotics
	 TLO1.1 Classify the robots TLO1.2 Define robot terminologies TLO1.3 Explain different transmission mechanisms TLO1.4 Interpret different specifications of robot TLO1.5 Explain need of automation 	 History of robots, Classification of robots, Present status and future trends. Basic components of robotic system. Basic terminology- Accuracy, Repeatability, Resolution, Degree of freedom, dexterity, compliance, RCC device. Mechanisms and transmission, End effectors, Grippers- different methods of gripping, Mechanical grippers- Slider crank mechanism, Screw type, Cam type gripper, Magnetic grippers, Vacuum grippers, Air operated grippers. Specifications of robot. Introduction to Principles & Strategies of Automation, Types & Levels of Automations Need of industrial applications of robot.
	Course Outcome: CO1 Teaching	g Hours: 07hrs Marks: 10
2	TLO2.1 Explain robotic sensors TLO2.2 Differentiate between different sensors TLO2.3 Selection criterion for sensors in robotic system	Unit-IIRobotic Sensors2.1 Robotic Sensors: Introduction to robotic sensors2.2 Tactile sensors- touch sensors, force sensors, force sensing wrist, joint sensors, tactile array sensors, proximity and range sensors. miscellaneous sensors.2.3 Desirable features of sensors used in robotics.
		2.4 Need for sensors and vision system in the working and control of a robot. Marks: 10
	Course Outcome: CO2 Teachin	ng Hours: 07hrs Marks: 10 Unit-III Signal Recognition and Processing
3	 TLO3.1 Explain vision control system TLO3.2 Explain necessary image processing tools for robotics TLO3.3 List applications of vision controlled robotic system 	 3.1 Sensing and digitization function 3.1.1 Image devices 3.1.2 Lighting technics 3.1.3 Analog to digital signal conversions. (sampling, encoding and image storage) 3.2 Image processing and analysis 3.2.1 Image data reduction. 3.2.2 Segmentation. 3.2.3 Thresholding. 3.2.4 Region drawing. 3.2.5 Edge detection. 3.2.6 Feature extraction.

	of vision controlled robotic contro
ng Hours: 09hrs	Marks: 12
 4.1.3 Robot language st 4.1.4 Constants, variable 4.1.5 Motion, end effect 4.1.6 Communication at 4.1.7 Monitor mode control 4.2 Robot coding introduct 4.2.1 Methods of program 4.2.2 Lead through limitations. 4.2.3 Path in space, moto 4.2.4 WAIT, SIGNAL 4.3 Introduction to teach period 4.4 Simple program to pick 4.5 Simple program to pall 	anguages languages. bot programming languages. tructures les and other data objects. ctor, sensor commands. and data processing. mmands tion ramming. programming, capabilities an otion interpolation. DELAY commands. endant. k and place. letize the object.
ng Hours: 12hrs	Marks: 14
Unit-V Applications	s and Maintenance
handling.	f maintenance. s and remedies. spects and precautions in robo
	 Unit-IV Robot Program 4.1 Introduction to robot la 4.1.1 The textual robot 4.1.2 Generation of robot 4.1.2 Generation of robot 4.1.3 Robot languages 4.1.4 Constants, variab 4.1.5 Motion, end effect 4.1.6 Communication a 4.1.7 Monitor mode co 4.2 Robot coding introduct 4.2.1 Methods of program 4.2.2 Lead through limitations. 4.2.3 Path in space, mod 4.2.4 WAIT, SIGNAL 4.3 Introduction to teach p 4.4 Simple program to piel 4.5 Simple program to pall 4.6 Simple program for ins ng Hours: 12hrs Unit-V Applications 5.1 Material handling 5.1.1 Pick and place. 5.1.2 Palletizing. S.2 Process operations 5.2.1 Spot welding, con 5.2.2 Spray coating. 5.2.4 Plastic moulding. 5.2.5 Forging. 3 Automated assemblies. 4 Automated inspection. 5.5 Robot maintenance 5.5.1 Need and types o 5.5.2 Common troubles 5.5.3 Safety norms, as

V. Laboratory Learning Outcome and Aligned Practical / Tutorial Experiences.

Sr No	Practical / Tutorial / Laboratory Learning Outcome (LLO)	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of Hrs.	Relevant COs	
1	LLO1.1 Select robot gripper for given applicationLLO1.2 Demonstrate robot gripper for given application	Study and analysis of robotic	02	CO1	
2	LLO2.1 Choose sensors for given part/ system in robot according to applicationLLO2.2 Demonstrate sensor operation	n Sensor interfacing for robot	02	CO2	
3	LLO3.1 Simulate system for given motior commands	¹ Motion commands	02	CO2	
4	LLO4.1 Simulate system for given ence effector commands	End effector command	02	CO3	
5	LLO5.1 Implement machine vision like edge, shape, location, color detection	Machine vision implementation	02	CO3	
6	LLO6.1 Develop code for vision operationLLO6.2 Implement code to sync with robo operation	Robot operation with machine vision	02	CO3	
7	LLO7.1 Develop codes for vision operation using OpenCV sourceLLO7.2 Develop codes for image processing operations	Open source computer vision	02	CO3	
8	LLO8.1 Simulate inspection command to tes bolt and bearings	t Inspection commands	02	CO3	
9	LLO9.1 Develop code for robot movement for given path	Robot movement	02	CO4	
10	LLO10.1 Develop code for palletizing giver object	¹ Palletizing the object	02	CO4	
11	LLO11.1 Develop code for robot movement for interrupted welding line path	Robot path creation	02	CO4	
12	LLO12.1 Develop code for robot movement for painting operation path	Robot path creation	04	CO4	
13	LLO13.1 Develop code for spot welding operation	Welding operation	04	CO5	
14	LLO14.1 Develop code for plastic molding operation	³ Plastic molding	04	CO5	
15	LLO15.1 Write standard procedure for robotic maintenance LLO15.2 Perform basic maintenance of given robotic system re: Minimum 12 experiments are compulsory a	Maintenance of robot	04	CO5	

Note: Minimum 12 experiments are compulsory and should be chosen such that all COs will be covered.Robotics and Automation (IS23203)(Approved copy)P-23 Scheme

VI. Suggested Micro Project / Assignment/ Activities for Specific Learning / Skills Development (Self-Learning):

Microprojects:-

- 1. Visit robotic industry in nearby vicinity and prepare detailed report on operation and maintenance practices.
- 2. Develop robot program for performing various industrial operations.
- 3. Design a simulated robotic work cell.
- 4. Develop a low cost robotic prototype.
- 5. Develop IoT based robotic prototype.

VII. Specification Table:

Unit	Tania Titla	Distribution of Theory Marks							
No	Topic Title	R Level	U Level	A Level	Total Marks				
1	Basics of Robotics	4	4	2	10				
2	Robotic Sensors	2	4	4	10				
3	Signal Recognition and Processing	2	4	6	12				
4	Robot Programming	2	6	6	14				
5	Applications and Maintenance	2	6	6	14				
	Total Marks	12	24	24	60				

VIII. Assessment Methodologies/Tools:

Formative assessment (Assessment for Learning)

- Rubrics for continuous assessment based on attendance, process and product related performance indicators. (25 Marks)
- Rubrics for continuous assessment of self-learning assignments/ micro project/ activities based on process and product related performance indicators. (25 Marks)

Summative Assessment (Assessment of Learning)

• End of the term theory examination. (60 Marks)

Suggested COs - POs Matrix Form IX.

Cours			Program	nme Outcome	s (POs)			Outo	ammo comes Os)
Cours e Out- comes (COs)	PO-1 Basic and Discipline Specific Know- ledge	PO-2 Problem Analysis	PO-3 Design/ Develop- ment of Solutions	PO-4 Engi- neering Tools, Experime- ntation	PO-5 Engi- neering Practices For Society, Sustain- ability and Environ- ment	PO-6 Project Manage -ment	PO-7 Life Long Learn- ing	PSO - 1	PSO - 2
CO1	1		1		SCIVA.		1	1	
CO2	3		1		1	1	1	2	
CO3	3	2	2		1	2	2	2	2
CO4	2	2	2	2	1	2	2	2	2
CO5	2	2	2		1	2	2	2	2
	: - High:03, N ted Learning	8 B		lapping:	T				

X. Suggested Learning Materials / Books

Sr. No.	Title	Author, Publication, Edition and Year of Publication	ISBN NO.
1	Introduction to Robotics	Saha S. K., McGraw Hill Education Pvt. Ltd.	978-0070140011
2	Robotics Technology and Flexible Automation	Deb S. R., McGraw Hill Publication, New Delhi	978-0071331298
3	Introduction to Robotics (Mechanics and Controls)	Craig J. J., Pearson Education Ltd	978-9356062191
4	Robotics Fundamental Concepts and Analysis	Ghoshal, Ashitava, Oxford University press 2006	978-0195673913
5	Industrial Robotics	Mikell P. Grover, Mitchell Weiss, Rogger N. Nagel, Nicholas G. Ordey, Tata McGraw Hill Education Pvt. Ltd. New Delhi	978-0070265097

XI. Learning Websites & Portals

Sr. No.	Link / Portal	Description
1	https://www.roboanalyzer.com/virtual-experiments.html	Virtual Lab
2	https://www.vlab.iitkgp.ac.in/mr/	Virtual Lab
3	https://www.roboanalyzer.com/virtual-experiments.htm	Virtual Lab
4	https://www.robotshop.com/community/	Tutorials

Robotics and Automation (IS23203)

Sr. No.	Name	Designation	Institute/Organization	
1	Mr. Kiran Kulkarni	Director, Technical and Business Development	Denar Automation, Pune	
2	Ms. Manju Kurien	Lecturer in Automation & Robotics	Vivekanand Education Society, Chembur	
3	Dr. B. B. Sul	Head of Department, Instrumentation Engg.	Government Polytechnic, Mumbai	
4	Mr. Firoz S. Bagwan	Lecturer in Instrumentation	Government Polytechnic, Mumbai	

XII. Academic Consultation Committee/Industry Consultation Committee:

Coordinator, Curriculum Development, Department of Instrumentation Engg.

Head of Department Department of Instrumentation Engg.

Incharge, Curriculum Development Cell Government Polytechnic, Mumbai

Principal Government Polytechnic, Mumbai

Programme: Diploma in Instrumentation Engineering ((E&C	C) (Sandw	rich Patte	ern)						
Course Code: IS23109 Cou			Course 7	[itle:]	Instru	mentatio	n Circuit	s Desig	gn				
Compulsory / Optional: Compulsory					1								
Learr	ning Sch	eme and	Credits		1			A	ssessmen	t Schei	ne		
						FA-TH SA-TH SA- (2:30 FA-PR SA-							
CL	TL	LL	SLH	NLH	Credits	T1	T2	Hrs.)	1'A-1 K	PR	OR	SLA	Total
3		2	1	6	3				50	50#		25	125

Total IKS Hrs. for course: --- Hrs.

Abbreviations: CL-Class Room Learning, TL-Tutorial Learning, LL-Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA-Formative Assessment, SA-Summative assessment, SLA-Self Learning Assessment

Legends: @ Internal Assessment, # External Assessment, *# Online Examination, @\$ Internal Online Examination

Note:

- 1. FA-PR represents tutorial/practical term work of 50 Marks.
- 2. SA-PR represents the end term practical examination of 50 Marks.
- 3. SLA represents self-learning Assessment of 25 Marks.

I. Rationale:

Operational amplifier is most adaptable IC used widely used to develop various circuits in electronic field, biomedical field and Industry. Students should develop skills to build, test, develop circuits based on op-amp and understand the working of various analog and digital signal conditioning circuits using op-amp for Industrial, consumer applications.

II. Industry / Employer Expected Outcome:

The aim of this course is to attain the following industry/ employer expected outcome through various teaching learning experiences:

"Develop various circuits using op-amp and special purpose IC's for industry applications".

III. Course Outcome: Students will be able to achieve & demonstrate the following COs on completion of course based learning.

CO1	Understand the basic parameters of op amp
CO2	Select op-amp in linear and non- linear applications
CO3	Develop signal conditioning circuits using instrumentation amplifier
CO4	Interpret different types of filters and their frequency response
CO5	Utilize IC's in various circuits for specific applications

IV. Course Content Details:

Theory Learning Outcomes (TLO's) aligned to CO's	Topics / Sub-topics
 (TLO's) aligned to CO's TLO1.1 Draw symbol and pin diagram of op amp TLO1.2 Explain functions of each stage in block diagram of op-amp. TLO1.3 Define op-amp parameters TLO1.4 Describe open loop configuration of op-amp 	 Unit-I Fundamental of operation amplifier(op-amp) 1.1 Operational amplifier definition, symbol, pin diagram of Op-amp IC741 and OP-07. 1.2 Block Diagram of Op-amp and function of each stage 1.3 Ideal Op-amp electrical characteristic and Transfer characteristics. 1.4 Op-amp Parameter: Input offset voltage, input offset current, Input bias current, offset voltage adjustment range, Common mode rejection ratio (CMRR), supply voltage rejection ratio (SVRR), Slew rate, Differential Input resistance, Input capacitance, Input voltage range, Large Signal voltage gain, Gain Bandwidth product, output voltage swing, Output resistance 1.5 Virtual Short and virtual ground Concept. 1.6 Open loop configurations of Op-amp
e Outcome: CO1 Teaching	Hours: 10 hrs. Marks:
 TLO2.1 Draw and explain operation with output equation of closed loop configuration of op amp. TLO2.2 Calculate the output equation of Arithmetic operation of op amp. TLO2.3 Explain with sketches working of op amp for given application. TLO2.4 Describe with sketch the nonlinear application of op amp. 	 Unit-II Linear& Non-Linear Applications of Op-amp 2.1 Linear applications of Op-amp 2.1.1. Close loop configuration: Inverting amplifier, non-Inverting amplifier and Unity gain amplifier 2.1.2. Arithmetic Operation: Adder/summing/scaling/ averaging amplifier, Subtractor/differential amplifier, Integrator, Differentiator, Multiplier and Divider 2.1.3. Voltage to current Converter with floating load. 2.1.4. Current to voltage converter. 2.1.5. Sample and hold circuit. 2.2 Non-Linear applications of Op-amp 2.2.1. Comparator: Inverting and Noninverting. 2.2.2. Comparator applications: Zero crossing detector, Schmitt trigger circuit.
Course Outcome: CO2 Teac	hing Hours: 09 hrs. Marks:
 TLO3.1 State the need and features of Instrumentation amplifier. TLO3.2 Explain with sketch, working and output equation of Instrumentation amplifier. TLO3.3 Understand IC LM324 for different applications of instrumentation amplifier. TLO3.4 Draw and Design signal 	 Unit-III Instrumentation Amplifier 3.1 Need and features of instrumentation amplifier 3.2 Two & Three op-amp Instrumentation amplifier Advantages and disadvantages of Instrumentation. 3.3 IC LM-324 pin configuration, specification 3.4 Sensor signal conditioning – design considerations and applications for RTD, LM35 thermocouple, Load
	(TLO's) aligned to CO's TLO1.1 Draw symbol and pin diagram of op amp TLO1.2 Explain functions of each stage in block diagram of op-amp. TLO1.3 Define op-amp parameters TLO1.4 Describe open loop configuration of op-amp e Outcome: CO1 TLO2.1 Draw and explain operation with output equation of closed loop configuration of op amp. TLO2.2 Calculate the output equation of arithmetic operation of op amp. TLO2.3 Explain with sketches working of op amp for given application. TLO2.4 Describe with sketch the nonlinear application of op amp. TLO3.1 State the need and features of Instrumentation amplifier. TLO3.2 Explain with sketch, working and output equation of Instrumentation amplifier. TLO3.3 Understand IC LM324 for different applications of instrumentation amplifier.

Instrumentation Circuits Design (IS23109)

 TLO4.1 Define filter and differentiate between Active filter and passive filter TLO4.2 Understand different types of filter and their characteristics TLO4.3 Draw frequency response curve for given filter with cut-off frequency equation 	 4.1 Definition of filter, 4.2 Advantages of active filters over passive filters. 4.3 Filter Classification. 4.4 Filter Characteristic terms: order of filter, cut off frequency, pass band, stop band, centre frequency roll off rate, Bandwidth, Q factor. 4.5 Types of filters:
TLO4.4 Explain working of given type of filter with sketch TLO4.5 Calculate cut-off frequency for LPF and HPF.	 4.5.1. Low pass (first order Butterworth) 4.5.2. High pass (first order Butterworth) 4.5.3. Band pass filter (first order): wide & Narrow 4.5.4. Band reject filters (first order): wide & Narrow 4.5.5. All pass filters (Circuit diagram, operation, frequency response, Applications)
Course Outcome: CO4 Teachin	ng Hours: 09 hrs Marks:
 5 TLO5.1 State need of timer with pin diagram. TLO5.2 Explain the operation of IC555 timer with sketch. TLO5.3 Describe working of multivibrator using IC555. TLO5.4 Calculate duty cycle of given multivibrator. 	 Unit-V Specialized IC Applications 5.1 IC555 timer: Need of Timer, features, block diagra and operation, Pin Diagram and function 5.2 IC555 timer as astable multivibrator and monostal multivibrator (circuit, operation, output wave form output equation, applications) 5.3 Application: frequency Divider, Square Wave
	Generator (circuit diagram & operation)

V. Laboratory Learning Outcome and Aligned Practical / Tutorial Experiences.

Sr		tical / Tutorial / Laboratory	Laboratory Experiment / Practical Titles /		
No		earning Outcome (LLO)	Tutorial Titles	of Hrs.	COs
1	LLO1.1	Implement circuit to test the op-amp parameter	Measure the parameters of OP-Amp (input offset voltage, input offset current, input bias current & CMRR)	02	CO1
2	LLO2.1	Implement circuit to measure output of Inverting and non- inverting amplifier	Test the Inverting & Non- Inverting amplifier usingIC741	02	CO2
3	LLO3.1	Implementcircuit to measureoutputvoltageusingInstrumentation amplifier	Measure the Gain of Instrumentation amplifier circuit.	02	CO3
4	LL04.1	Implement circuit to measure integrator using op amp	Test the output of Integrator circuit using IC741	02	CO2

Instrumentation Circuits Design (IS23109)

Government Polytechnic, Mumbai

000	ernment Folylechnic, Mumbul	Instrumentatio	n Engine	ering
5	LLO5.1 Implement circuit to measure differentiator using op amp	Test the output of differentiator circuit using IC741	02	CO2
6	LLO6.1 Implement circuit to measure V to I converter using op amp	Measure the output of V to I converter using IC741	02	CO2
7	LLO7.1 Implement circuit to measure output of Adder / subtractor	Measure the output of adder/scaler/ averaging and subtractor using IC741	02	CO2
8	LLO8.1 Implement circuit to determine time cycle of Monostable multivibrator	Construct Monostable multivibrator using IC555 timer and determine time cycle.	02	CO5
9	LLO9.1 Implement circuit to calculate cut-off frequency of low pass filter	Observe the response of first order low pass Butterworth filter using OP- Amp	02	CO4
10	LLO10.1 Implement circuit to measure output of comparator	Build to measure the output of Comparator using IC741	02	CO2
11	LLO11.1 Implement circuit to measure output of Instrumentation amplifier using IC LM324	Construct Instrumentation amplifier circuit using IC LM324	02	CO3
12	LLO12.1 Develop signal conditioning circuit for RTD using IC LM324	Test signal conditioning circuit for RTD using instrumentation amplifier	02	CO3
13	LLO13.1 Implement circuit to calculate cut-off frequency of high pass filter using IC741	Observe the response of first order high pass Butterworth filter using op- amp	02	CO4
14	LLO14.1 Implement circuit to test the zero -crossing detector using IC741	Measure the output of zero crossing detector using IC741	02	CO2
15	LLO15.1 Implement circuit to test band pass filter using IC741	To observe the response of first order band pass filter using OP- Amp	02	CO4
16	LLO16.1 Implement circuit to measure resolution of ADC	Construct circuit to measure resolution of ADC	02	CO3
17	LLO17.1 Implement circuit to determine time cycle of astable multivibrator	To construct circuit of Astable multivibrator using IC555 timer to determine time cycle.	02	CO5
18	LLO18.1 Implement circuit to test signal conditioning circuit for Load Cell using IC LM324	Built to measure signal conditioning circuit for Load cell using IC LM324	02	CO3

Note: Minimum 12 experiments are compulsory and should be chosen such that all COs will be covered.

VI. Suggested Micro Project / Assignment/ Activities for Specific Learning / Skills Development (Self-

Learning):

Micro Project:

- 1. Prepare circuit and test square wave generator circuit as an application of Astable multivibrator
- 2. Prepare circuit of Notch Filter or band pass filter
- 3. Develop and test Frequency Divider circuit as an application of Monostable multivibrator
- 4. Develop signal conditioning of sensor (Load cell/strain gauge/ Photovoltaic cell)
- 5. Develop signal conditioning circuit of Photovoltaic cell

VII. Specification Table: ---NA-----

Instrumentation Circuits Design (IS23109)

VIII. Assessment Methodologies/Tools:

Formative assessment (Assessment for Learning)

- Rubrics for continuous assessment based on attendance, process and product related performance indicators. (50 Marks)
- Rubrics for continuous assessment of self-learning assignments/ micro project/ activities based on process and product related performance indicators. (25 Marks)

Summative Assessment (Assessment of Learning)

• Rubrics for assessment based on laboratory process and product related performance indicators. (50 Marks)

	Programme Outcomes (POs)								Programme Outcomes (POs)	
Cours e Out- comes (COs)	PO-1 Basic and Disciplin e Specific Know- ledge	PO-2 Proble m Analysi s	PO-3 Design/ Develop- ment of Solutions	PO-4 Engi- neering Tools, Experim e-ntation	PO-5 Engineering Practices For Society, Sustain- ability and Environ- ment	PO-6 Project Manage -ment	PO-7 Life Long Learn- ing	PSO - 1	PSO - 2	
CO1	3	2	1	2		1	-	2	1	
CO2	3	2	2	2	1	1	-	2	1	
CO3	3	2	2	2	1	1	-	2	1	
CO4	3	2	2	2	19160	1~	-	2	1	
CO5	3	2	2	2	1	1	-	2	1	

IX. Suggested COs - POs Matrix Form:

X. Suggested Learning Materials / Books

Sr. No.	Title	Author, Publication, Edition and Year of Publication	ISBN NO.		
1	Op-Amp & Linear Integrated circuits				
2	Operational amplifiers with Linear integrated circuits	William Stanley, Pearson Education India, 2002	9788131708453		
3	Integrated Circuits	K. R. Botkar, Khanna Publication, 1987	9788174092083		
4	Linear Integrated Circuit	Roy Choudhary, D. Jain, New age International Publisher, New Delhi, 2003	9788122414707		

Government Polytechnic, Mumbai

Instrumentation Engineering

5	Operational amplifier and Linear IC's	nd Bell, David A., Oxford University Press. New Delhi, 2011			
6	Design with Operational Amplifier & Analog Integrated Circuit				
7	Operational amplifier & Linear Integrated circuits	Coughlin & Driscoll Fourth Edition, Prentice Hall of India	9780136377856		
8	Application and Design with Analog Integrated Circuit	J. Michael Jacob Second Edition, Reston Publishing co., 1982	9780835902458		

XI. Learning Websites & Portals:

Sr. No.	Link / Portal	Description
1	https://www.electronicsforum.com	Op-amp basics
2	https://www.electronicshub.org	Op-amp applications
3	https://www.studyelectronics.in	Op-amp linear circuits
4	https://www.electronics-tutorials	Tutorial on op amp
5	https://www.electrical4u.com	Op-amp linear circuits

XII. Academic Consultation Committee/Industry Consultation Committee:

Sr. No.	Name	Designation	Institute/Organization		
1 Mrs. Swapnali V. Latke		Senior Embedded Software	Paras defense and space technologies Ltd.		
2	Mrs. Avanti Ghadge	Lecturer in Electronic engg.	Govt. Polytechnic, Thane		
3	Mr. Firoz S. Bagwan	Lecturer in Instrumentation	Govt. Polytechnic, Mumbai		
4	Ms. Kavita Waghmare	Lecturer in Instrumentation	Govt. Polytechnic, Mumbai		

Coordinator, Curriculum Development, Department of Instrumentation Engg.

Head of Department Department of Instrumentation Engg.

Incharge, Curriculum Development Cell Government Polytechnic, Mumbai

Principal Government Polytechnic, Mumbai

Instrumentation Circuits Design (IS23109)

(Approved copy)

P-23 Scheme Page no.6 of 6

Programme: Diploma Instrumentation Engineering (E&C) (Sandwich Pattern)												
Course Code: IS23606 Course T					Fitle: Industrial Data Communication							
Compulsory/Optional: Compulsory												
ing Sche	me and	Credits			Assessment Scheme							
					FA-TH SA-TH			FA-	SA	\-		
TL	LL	SLH	NLH	Credits	T1	T2	(2:30 Hrs.)	PR	PR	OR	SLA	Total
	2		4	2				25		25@		50
	e Code: 1 ulsory/O ing Sche TL	e Code: IS23606 ulsory/Optional: ing Scheme and O TL LL	e Code: IS23606 ulsory/Optional: Compul ing Scheme and Credits TL LL SLH	e Code: IS23606 ulsory/Optional: Compulsory ing Scheme and Credits TL LL SLH NLH	e Code: IS23606 Course 7 ulsory/Optional: Compulsory ing Scheme and Credits TL LL SLH NLH Credits	e Code: IS23606 Course Title: ulsory/Optional: Compulsory ing Scheme and Credits TL LL SLH NLH Credits T1	e Code: IS23606 Course Title: Indus ulsory/Optional: Compulsory ing Scheme and Credits TL LL SLH NLH Credits T1 T2	e Code: IS23606 ulsory/Optional: Compulsory ing Scheme and Credits TL LL SLH NLH Credits T1 T2 Hrs.)	e Code: IS23606 ulsory/Optional: Compulsory ing Scheme and Credits TL LL SLH NLH Credits FA-TH SA-TH (2:30 FA- Hrs.) PR	e Code: IS23606 ulsory/Optional: Compulsory ing Scheme and Credits TL LL SLH NLH Credits T1 T2 SA-TH (2:30 FA- Hrs.) PR PR	e Code: IS23606 ulsory/Optional: Compulsory ing Scheme and Credits TL LL SLH NLH Credits T1 T2 SA-TH Credits T1 T2 Hrs.) PR PR OR	e Code: IS23606 Course Title: Industrial Data Communication ulsory/Optional: Compulsory ing Scheme and Credits Assessment Scheme TL LL SLH NLH Credits T1 T2 SA-TH (2:30 FA- T1 T2 Hrs.) PR PR OR SLA

Total IKS Hrs. for course: --- Hrs.

Abbreviations: CL- Class Room Learning, TL- Tutorial Learning, LL- Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, SLA- Self Learning Assessment

Legends: @Internal Assessment, #External Assessment, *#Online Examination, @\$ Internal Online Examination

Note:

- 1. FA-PR represents tutorial/practical term work of 25 Marks.
- 2. SA-OR represents the end term Practical examination of 25 Marks

I. Rationale:

The course aligns perfectly with the demands of Industry 4.0, where automation, data exchange, and Cyber-Physical Systems such as Networked control systems like PLC, SCADA and DCS are crucial. There's a significant gap in the workforce regarding industrial communication technologies. This course aims to bridge that gap and equip students with in-demand skills. Diploma Instrumentation Engineers with knowledge of industrial data communication will have better job prospects in various industries, including manufacturing, process control, energy, and more.

II. Industry/Employer Expected Outcome:

The aim of this course is to help the student to achieve the following industry identified outcome through various learning experiences:

"To design, implement, maintain, and troubleshoot industrial data communication networks of industrial automation".

III. Course Outcomes: Students will be able to achieve & demonstrate the following COs on completion of course based learning

CO1	Select appropriate communication protocols for specific automation applications.			
CO2	CO2 Configure and troubleshoot Serial communication interfaces			
CO3	Configure, maintain, and troubleshoot Fieldbus networks.			
CO4	Configure, maintain, and troubleshoot Ethernet based networks.			
CO5 Configure, maintain, troubleshoot Wireless networks.				

Unit No.	Theory Learning Outcomes (TLO's)aligned to CO's	Topics/Sub-topics
1		Unit- I Introduction to Industrial Data Communication Networks for Automation
	TLO1.1 Describe the architecture of automation systems and their	1.1 Architecture of Automation Systems: Levels of
	communication networks.	automation systems (field, control, plant,
	TLO1.2 Explain the OSI model and its	management), Communication requirements at ea
	relevance to industrial	level (bandwidth, reliability, security, latency)
	communication.	Resistive Displacement Transducers:
	TLO1.3 Identify and compare various	Potentiometer, Strain gauge, types, Effect of
	industrial communication	temperature on strain gauge measurement, Simpl
	protocols.	Numerical on strain gauge factor.
	TLO1.4 Understand different network	1.2 OSI Model: Seven layers and their functions
	components, topologies, and	1.3 Basic Concept of Industrial Communication
	transmission media used in	Protocols: Fieldbus Protocols (Modbus, HART,
	industrial automation.	Foundation, Fieldbus, Profibus), Ethernet-based
	TLO1.5 Compare the digital modulation	Protocols(Ethernet, TCP/IP, Profinet), Wireless
	techniques- FSK and PSK	Protocols (Wi-Fi, Bluetooth, Zigbee, Wireless
		HART, ISA 100.11a)(Detailed study in later unit
	6 [/() 2 5	1.4 Network Components, Topology, and Transmiss Media:
		1.4.1 Network components (router, bridge,
		gateway, repeater, hub, switch,
		connectors: BNC, DB9, DB15, RJ45)
		functions of each
	\rightarrow VDS1	1.4.2 Network topologies (bus, star, ring,
	The second s	mesh)- advantages and disadvantage
		of each
		1.4.3 Transmission media (twisted pair cabl
	MA L	shielded/unshielded, co-axial cables,
		fiber optic cables- Patch Cords, wirele
		radio) – characteristics and application
		1.5 Digital Modulation Techniques- Introduction to FSK and PSK
Cours	seOutcome:CO1 Teachin	gHours:08 hrs. Mark
•		Unit-II Serial Communication Interfaces/Protocols
2	TLO2.1 Explain the characteristics of serial communication interfaces	2.1 RS-232: Features, working, distances, and applications

applications 2.2 RS-485: Features, working, distances, and applications

2.3 On-board Serial Interfaces/Protocols: I2C, CAN, USB, SPI (Architecture, working, features, data

Industrial Data Communication (IS23606)

TLO2.2 Describe various serial

and RS-485.

TLO2.3 Describe various on-board serial

interfaces/protocols

communication standards: RS-232

	TLO2.4 Configure and troubleshoot serial communication links.	format and applications)2.4 Configuring and troubleshooting the communication networks	e serial data
Cours	e Outcome: CO2 Teaching	Hours:04 hrs.	Marks:-
3	 TLO3.1 Understand the concepts/operation and applications of fieldbus protocols. TLO3.2 Compare the features of fieldbus protocols. TLO3.3 Configure and troubleshoot the fieldbus protocols. 	Unit-III Fieldbus Protocols/Networks Concept, features, definition, operation of following fieldbus protocols/networ 3.1 Modbus 3.2 HART 3.3 Foundation Fieldbus 3.4 Profibus 3.5 Configuring and troubleshooting fin protocols/networks	ks:
Cours	e Outcome: CO3 Teaching	Hours:07 hrs.	Marks:-
4	 TLO4.1 Understand the concepts/operation and applications of industrial Ethernet protocols. TLO4.2 Compare the features of industrial Ethernet protocols. TLO4.3 Configure and troubleshoot industrial Ethernet networks. 	Unit-IV Industrial Ethernet Concept, features, definition, operation of following industrial Ethernet network 4.1 Industrial Ethernet-10Mbps/100Mb Industrial Ethernet 4.2 TCP/IP Protocol 4.3 Profinet 4.4 Configuring and troubleshooting In	ks: pps/Gigabit
Cours	e Outcome: CO4 Teaching	Hours: 04 hrs.	Marks:-
5	 TLO5.1 Understand the concepts/operation and applications of industrial wireless networks. TLO5.2 Compare the features of industrial wireless networks. TLO5.3 Configure and troubleshoot industrial wireless networks 	 Unit-V Industrial Wireless Networks Architecture, components, applications of industrial wireless networks: 5.1 Industrial Wireless Local Area Netwi-Fi 5.2 Bluetooth 5.3 Low-Rate Wireless Personal Area (LRWPAN) - ZigBee, Wireless Ha 6LoWPAN 5.4 Satellite/Mobile Networks- GSM, 5.5 Configuring and troubleshooting with 	work (WLAN)- Networks ART, ISA100.11a GPRS, 5G/6G,

V. Laboratory Learning Outcome and Aligned Practical/ Tutorial Experiences.

Sr.	Practical/ Tutorial/ Laboratory Learning	Laboratory Experiment/ Practical	Number	Relevant
No	Outcome (LLO)	Titles / Tutorial Titles	of Hrs.	COs
1	LLO1.1 To identify the different levels of laboratory automation system (PLC/SCADA/DCS) and explore	Identification of different levels in the laboratory automation system and exploring their communication	02	

Industrial Data Communication (IS23606)

Gov	vernment P	olytechnic, Mumbai	Instrume	entation Eng	gineering
		the communication requirements.	requirements		
2	LLO2.1	To simulate/build any one automation level (field, control, plant, management) over suitable communication network (Use PLC/SCADA /DCS-based process control trainer setup or Virtual lab simulator)	Simulation/ implementation of any one automation level (field, control, plant, management) over suitable communication network	02	CO1
3		To simulate/implement different network topologies (bus, star, ring, mesh) using network simulation software (e.g., NS2/NS3/ Cisco Packet Tracer)	Simulation/implementation of different network topologies for various instruments/computer terminals, and test the data transfer	02	CO1
4	LLO4.1	To establish serial communication between a microcontroller and computer using RS232 cable and appropriate HyperTerminal like PuTTY	Establishing a RS232 based serial communication between a microcontroller and computer	02	CO2
5	LLO5.1	To configure DF1 protocol for establishing serial communication between PLC and PC using RS-232 /USB/Ethernet	Establishing the serial communication between PLC and computer using RS232 /USB/Ethernet cable and DF1 protocol	02	CO2
6	LLO6.1	To establish I2C type serial communication between two Arduinos	Establishing the serial communication between two Arduinos using I2C protocol	02	CO2
7	LL07.1	To interface I2C type temperature sensor with Arduino controller.	Interfacing I2C type temperature sensor with Arduino controller for temperature measurement	02	CO2
8	LLO8.1	To establish SPI type serial communication between two Arduinos	Establishing the serial communication between two Arduinos using SPI protocol	02	CO2
9	LLO9.1	To interface SPI barometric sensor with Arduino controller	Interfacing barometric pressure sensor with Arduino using SPI protocol	02	CO2
10	LLO10.1	To interface car temperature sensor with Arduino controller using CAN module	Interfacing car temperature sensor with Arduino using CAN bus	02	CO2
11	LLO11.1	To interface windscreen wiper with Arduino controller using CAN module	Interfacing windscreen wiper with Arduino using CAN bus	02	CO2
12	LL012.1	To interface PC with Arduino Uno using Serial Communication Port- USB	Interfacing PC with Arduino Uno using Serial Communication Port-USB	02	CO2
13	LLO13.1	To configure and troubleshoot a simple network of a PLC, VFD, and an HMI using MODBUS RS485 serial communication.	Design a simple network of a PLC, VFD, and an HMI using MODBUS RS485 serial communication.	02	CO3
14	LLO14.1	To configure HART enabled instrument using HART evaluation kit or HART communication software/simulator	Configuration of HART point-to- point communication network	02	CO3

Industrial Data Communication (IS23606)

GOV	vernment Polytechnic, Mumbai	Instrume	ntation En	gineering
15	FF simulator	Configuration Foundation fieldbus H1	02	CO3
16	LLO16.1 To set up a basic industrial Ethernet network using switches, routers, and network cables.	Industrial Ethernet Network Setup	02	CO4
17	LLO17.1 To demonstrate TCP/IP communication between two devices on an industrial Ethernet network.	TCP/IP Communication	02	CO4
18	LLO18.1 To connect Arduino UNO to a Laser with TCP/IP	Connect Arduino UNO to a Laser with TCP/IP	02	CO4
19	LLO19.1 To capture and analyze network traffic using a packet analyzer (e.g. Wireshark or Cisco Packet Tracer)	Network Performance Analysis	02	CO4
20	LLO20.1 To identify and troubleshoot common industrial Ethernet network problems (e.g., cable faults, device failures, network congestion).	Troubleshooting Network Problems	02	CO4
21	LLO21.1 To set up and configure a basic Wi-Fi network for industrial applications.	Wi-Fi Network Setup and Configuration	02	CO5
22	LLO22.1 To demonstrate Bluetooth communication between two devices (e.g., a microcontroller and a smartphone).	Bluetooth Communication	02	CO5
23	LLO23.1 To set up a simple ZigBee sensor network for measurement of ambient temperature	Setting up ZigBee Sensor Network for ambient temperature monitoring	02	CO5
24	LLO24.1 To set up two-hop Wireless HART Network sensor network for measurement of ambient temperature	Setting up two-hop WirelessHART Network for ambient temperature monitoring	02	CO5
25	LLO25.1 To deploy a LoRaWAN sensor node in a real-world environment	LoRaWAN Sensor Deployment	02	CO5
26	LLO26.1 To send and receive data using a GSM/GPRS modem	GSM/GPRS Communication	02	CO5

Note: Minimum 20 experiments are compulsory and should be chosen such that all COs will be covered.

- VI. Suggested Micro Project/ Assignment/ Activities for Specific Learning/ Skills Development (Self-Learning): --NA--
- VII. Specification Table: --NA--

VIII. Assessment Methodologies/Tools:

Formative assessment (Assessment for Learning)

• Rubrics for continuous assessment based on attendance, process and product related performance indicators. (25 Marks)

Industrial Data Communication (IS23606)

(Approved copy)

P-23 Scheme Page no.5 of 7 Government Polytechnic, Mumbai

Summative Assessment (Assessment of Learning)

• Rubrics for assessment based on laboratory process and product related performance indicators. (25 Marks)

	Programme Outcomes (POs)								Programme Outcomes (POs)	
Course Out- comes(COs)	PO-1 Basic and Discipline Specific Know- ledge	PO-2 Problem Analysis	PO-3 Design/ Develop- ment of Solutions	PO-4 Engi- neering Tools, Experime- ntation	PO-5 Engineerin g Practices For Society, Sustain- ability and Environ- ment	PO-6 Project Manage -ment	PO-7 Life Long Learn- ing	PSO -1	PSO -2	
CO1	3		2	2	1	·	1	1	3	
CO2	3	1.51	2	2	1	2-	1	1	3	
CO3	3	27-11	2	2	1		1	1	3	
CO4	3	2-//	2	2	1	% Z	1	1	3	
CO5	3	\bigcirc 1	2	2	1	N K	1	1	3	

IX. Suggested COs-Pos Matrix Form

Legends: - High:03, Medium:02, Low:01, No Mapping: --

X. Suggested Learning Materials/Books

Sr. No.	Title	Author, Publication, Edition and Year of Publication	ISBN NO.
1.	Industrial Data Communication	Lawrence M Thompson, ISA, 2008	978-1934394243
2.	Practical Data Communications for Instrumentation and Control	Park, John; Mackay, Steve; Wright, Edwin Newnes An imprint of Elsevier, Linacre House, Jordan Hill, Oxford Wheeler Road, Burlington, MA, 2003	978-0750657976
3.	Practical Industrial Data Networks: Design, Installation and Troubleshooting	Steve Mackay, Edwin Wright, Deon Reynders, John Park Newnes An imprint of Elsevier, 2004	978-0080480213
4.	Industrial Communication Technology Handbook	Richard Zurawski, ISA Group, San Francisco, California, USA , CRC Press, 2015	978-1482207330
5.	Process Software and Digital Networks	Bela G. Liptak, Halit Eren , 3rd edition 2002, CRC Press	978-1439863435
6.		Ramakrishna Budampati and Soumitri Kolavennu, Woodhead Publishing is an imprint of Elsevier, USA 2016	978-1782422303

XI. Learning Websites & Portals:

111	Ai. Learning websites & i or ans.								
	Sr. No.	Link/Portal	Description						

C		
		trumentation Engineering
	https://forum.arduino.cc/t/communication-between-2-microcontrollers-with-	I2C
1	<u>i2c/1001863/4</u>	
-	https://in.mathworks.com/help/matlab/supportpkg/measure-temperature-from-i2	2c-
	device-on-arduino-hardware.html	
		CDI
2	https://circuitdigest.com/microcontroller-projects/arduino-spi-communication-	SPI
-	tutorial	
	https://docs.arduino.cc/tutorials/communication/BarometricPressureSensor/	
_	https://how2electronics.com/interfacing-mcp2515-can-bus-module-with-	CAN
2	arduino/#google_vignette	
	https://diyprojectslab.com/vehicle-monitoring-mcp2515-can-bus-arduino/	
4	https://playwithcircuit.com/interfacing-pc-with-arduino-uno-using-serial-	Serial interface

XII.Academic Consultation Committee/ Industry Consultation Committee:

http://vlabs.iitkgp.ac.in/rtes/exp15/index.html

5

Sr. No.	Name	Designation	Institute/Organization
1	Mr. Prathmesh Mulay	Project Engineer	Endress Houser, Mumbai
2	Mr. Sanjay Rajput	Lecturer in Instrumentation	Govt. Polytechnic, Ratnagiri
3	Mr. F. S. Bagwan	Lecturer in Instrumentation	Govt. Polytechnic, Mumbai
4	Mr. Shivaji G. Thube	Lecturer in Instrumentation	Govt. Polytechnic, Mumbai

Coordinator, Curriculum Development, Department of Instrumentation Engg.

Head of Department Department of Instrumentation Engg.

Virtual Lab IIT

Incharge, Curriculum Development Cell Government Polytechnic, Mumbai

Principal Government Polytechnic, Mumbai

Programme: Diploma in Instrumentation Engineering (E&C) (Sandwich Pattern)												
Course Code: IS23503 Course T				Fitle: Basic Python Programming								
Compulsory / Optional: Compulsory												
Learn	ing Sche	me and	Credits			Assessment Scheme						
							SA-TH	FA-	SA	\-		
CL	TL	LL	SLH	NLH	Credits	FA-TH	(2:30 Hrs.)	PR	PR	OR	SLA	Total
		2	2	4	2	LY TE		25			25	50

Total IKS Hrs. for course:-- Hrs.

Abbreviations: CL- Class Room Learning, TL- Tutorial Learning, LL- Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, SLA- Self Learning Assessment

Legends: @ Internal Assessment, # External Assessment, *# Online Examination, @\$ Internal Online Examination

Note:

2. SLA represents self-learning Assessment of 25 Marks.

I. Rationale:

Python is a remarkably powerful dynamic programming language and known for its simple and easy-to-read syntax. Python is a versatile language that can be used for a wide range of tasks, including data analysis, visualization, automation, and control. For instrumentation engineers, who often work with data acquisition systems and control systems, Python has libraries and frameworks specifically tailored for data analysis, visualization, scientific computing and complex analysis. Python provides a powerful platform for developing custom solutions. Learning Python can greatly enhance the capabilities of instrumentation engineers and enable them to develop more efficient and innovative solutions for data acquisition, analysis, and control in their field.

II. Industry / Employer Expected Outcome:

The aim of this course is to help the student to achieve the following industry identified outcome through various learning experiences: **"Develop basic coding ability using python to solve problems."**

III. Course Outcomes: Students will be able to achieve & demonstrate the following COs on completion of course based learning

CO1	Interpret basic tools of Python programming
CO2	Develop Python programs for conditional and looping statements
CO3	Develop Python programs for 1 and 2 dimensional arrays
CO4	Perform data structure operations in Python using functions, modules and packages
CO5	Develop Python programs using control system library

^{1.} FA-PR represents tutorial/practical term work of 25 Marks.

Unit No.	Theory Learning Outcomes (TLO's) aligned to CO's	Topics / Sub-topics
1	 TLO1.1 Interpret the features of Python TLO1.2 Identify the given building blocks TLO1.3 Use appropriate data types for given application TLO1.4 Write simple program to display given message 	 Unit-I Basics of Python Programming 1.1 Features of python: Interactive, object oriented, Interpreted, platform independent 1.2 Building blocks of Python: Identifiers, keywords, Indention, Variables- Mutable and Immutable variable and comments 1.3 Data Types in Python: Numbers, Strings, Tuples, Lists, Dictionary 1.4 Declaration and use of data types 1.5 Running simple scripts in Python to display message
	Course Outcome: CO1 Teaching	g Hours: 04hrs Marks:
2	N/257	Unit-II Decision making and Looping
-	 TLO2.1 Use appropriate operators for given problem statement TLO2.2 Write simple programs for arithmetic logical expressions TLO2.3 Write simple Python programs for I/O operations TLO2.4 Write Python programs for decision making TLO2.5 Write Python programs for looping TLO2.6 Write Python programs for multiway branching and looping 	 2.1 Operators in Python: Arithmetic, relational assignment, logical, bitwise, membership and identity operators, Operator precedence, Expressions and Statements (Assignment statement) 2.2 I/O operations: Reading keyboard, printing on screen 2.3 Conditional programming: If - Else statement and nested if – else 2.4 Loops: While, do-while, for loops, use of range function in for 2.5 Loop manipulation: Nested loops, break, continue, pass, else, Use of compound expression in conditional constructs
(Course Outcome: CO2 Teachin	ng Hours: 05hrs Marks:
3	^O R _{AA}	Unit-III Data Structures
	 TLO3.1 Write an array for given problem statement TLO3.2 Develop python program for given matrix operations TLO3.3 Write python program to manipulate lists TLO3.4 Write python program to manipulate tuples TLO3.5 Write python program to manipulate sets TLO3.6 Write python program to manipulate dictionaries 	 3.1 Basics of array, Array as abstract Data Type, two-dimensional array 3.2 Matrix: Implementation of matrix, Matrix operation like addition, subtraction, scaling, Multiplication, Transpose 3.3 Lists: Creating python list, Appending Items, extending a List, Inserting Items, Removing Items, List Slice 3.4 Tuple: Defining Tuple, accessing values from Tuple, Basic Tuple operations, Built in Tuple functions/methods 3.5 Set: Defining Sets, accessing values from set, deleting set values, Basic set operations, Built in set functions/methods 3.6 Dictionary: Defining Dictionary, accessing values from Dictionary, deleting Dictionary operations, Built in

fover	nment Polytechnic, Mumbai	Instrumentation Engineering
		Dictionary functions/methods
(Course Outcome: CO3 Teachir	ng Hours: 05hrs Marks:
4	 TLO4.1 Use python standard functions for given problem statement TLO4.2 Develop user defined functions for given problem statement TLO4.3 Write python module for given problem statement TLO4.4 Write python package for given problem statement 	 Unit-IV Python Functions, Modules and packages 4.1 Built-In Functions, invoking built in functions, Module (Importing entire module or selected objects, using from statement), Functions from math, random, time & data module. 4.2 User Defined Function: Defining, invoking functions passing parameters (default parameter values, keyword arguments) 4.2.1 Scope of variables: void functions and functions returning values 4.3 Modules: Writing modules, importing modules importing objects from modules, python built-in modules, namespace and scoping 4.4 Python Packages: Introduction, writing python packages, using standard (math, scipy, Numpy matplotlib, pandas, seaborn, requests, scrapy etc. and user defined packages
5	Course Outcome: CO4 Teachir TLO5.1 Create classes and objects for given problem statement TLO5.2 Interpret overloading, overriding of classes	ng Hours: 06hrs Marks: Unit-V Object Oriented Programming 5.1 Creating classes and objects 5.2 Method Overloading and Overriding
	 TLO5.3 Interpret data hiding and abstraction TLO5.4 Interpret inheritance and composition in classes TLO5.5 Use appropriate functions for file handling and file exceptions 	 5.3 Data hiding and data abstraction 5.4 Inheritance and composition in classes 5.5 File handling: Opening files in different modes accessing file contents, reading, writing, closing renaming, deleting files and directories 5.6 Exception Handling
(Course Outcome: CO4 Teachi	ng Hours: 05hrs Marks:
6	TLO6.1 Interpret control system library functions	Unit-VI Control System Applications 6.1 Control system library functions

 Government Polytechnic, Mumbai

 TLO6.7 Interpret the LabView and python
 integration

Course Outcome: CO5

Teaching Hours: 05hrs

Marks: --

Instrumentation Engineering

Laboratory Learning Outcome and Aligned Practical / Tutorial Experiences V

Sr No		etical / Tutorial / Laboratory Jearning Outcome (LLO)	Laboratory Experiment / Practical Titles / Tutorial Titles	Nu mbe r of Hrs.	Relev -ant CO	
1	LL01.1	Write python program to display given message.	message on screen	02	CO1	
2	LLO2.1	Write python program to solve given expression	Implement python program using following operators: 1. Arithmetic 2. Relational & logical 3. Assignment 4. Bitwise 5. Membership 6. Identity	02	CO2	
3		Write python program to solve given conditional problem	 Implement python program to demonstrate the use of following conditional statements: 1. If statement 2. If-else statement 3. If-elseif-else statement 4. Nested if statement 	02	CO2	
4	LLO4.1 LLO4.2	Write python program for solving given problems using a while loop. Write python program for solving given problem using for loop	Implement python program to demonstrate the use of following looping statements: 1. while loop 2. for loop 3. nested loop	02	CO2	
5	LL05.1	Write python program to perform operations on list	Implement a python program to performfollowing operations on the List:1. Create a List2. Access List3. Update List4. Delete List	02	CO3	
6	LLO6.1	Write python program to perform operations on tuple	Implement python program to perform followingoperations on the Tuple:1. Create a Tuple2. Access Tuple3. Print Tuple4. Delete Tuple5. Convert tuple into list and vice-versa	02	CO3	
7	LL07.1	Write python program to manipulate the set	Implement a python program to performfollowing operations on the Set:1. Create a Set2. Access Set3. Update Set4. Delete Set	02	CO3	
8	LLO8.1	Write python program to perform operations on dictionary	Implement a python program to perform following operations on the Dictionary: Create, Access Dictionary, Update Dictionary, Delete Dictionary, Looping through Dictionary, Create Dictionary from list	02	CO3	
9	LLO9.1	Write function to solve given problem	Write user defined function to implement following features: Function without argument, Function with argument, Function returning	02	CO4	

-			0	
		value		
10	LLO10.1 Select appropriate module to solve given problem LLO10.2 Use given module to solve problem	Write a python program to demonstrate the use of following module:1. Math module2. Random module3. OS module	02	CO4
11	LLO11.1 Write user defined package to solve given problem	Write python program to create and use a user defined package for a given problem.	02	CO4
12	LLO12.1 Write python program using classes and objects to solve a given problem		02	CO4
13	LLO13.1 Write a python program to implement polymorphism LLO13.2 Write a python program use data hiding concept in python	Implement a python program to demonstrate Method Overloading, Method Overriding, Data hiding	02	CO4
14	LLO14.1 Use control system library to plot pole-zero plot for given transfer function LLO14.2 Use control system library to plot step response for given transfer function	Implement a python program to demonstrate pole-zero plot and step response for given transfer function	02	CO5
15	LLO15.1 Use control system library to plot gain and phase plot for given transfer function	Implement a python program to demonstrate gain and phase plot	02	CO5

Note: Minimum 12 experiments are compulsory and should be chosen such that all COs will be covered.

VI. Suggested Micro Project / Assignment/ Activities for Specific Learning / Skills Development (Self-

Learning):

- 1. Create a simple calculator program that allows the user to add, subtract, multiply, and divide two numbers.
- 2. Develop a basic quiz program that asks 3 multiple-choice questions and provides feedback on correct and incorrect answers.
- 3. Write a program that generates a random number and asks the user to guess it.
- 4. Build a Temperature Converter that takes a temperature in Celsius, Fahrenheit, or Kelvin and converts it into other temperature units.
- 5. Simulate a Simple Banking System that allows users to check their balance, deposit money, and withdraw money while ensuring the balance doesn't go negative.
- 6. Create a Password Generator that generates a random password containing letters, numbers, and symbols based on the user's preferred length.
- 7. Create an Expense Tracker that lets users enter daily expenses and displays total expenses for the month.
- 8. Build an Age Calculator that asks for the user's birth year and calculates their current age.
- 9. Develop a Simple Voting System that allows users to vote for predefined candidates and displays voting results.
- 10. Design a Fibonacci Series Generator that generates and displays the first N numbers in the Fibonacci sequence.

VII. Specification Table:----NA----

VIII. Assessment Methodologies/Tools: Formative assessment (Assessment for Learning)

Basic Python Programming (IS23503)

Government Polytechnic, Mumbai

- Rubrics for continuous assessment based on attendance, process and product related performance indicators. (25 Marks)
- Rubrics for continuous assessment of self-learning assignments/ micro project/ activities based on process and product related performance indicators. (25 Marks)

~	Programme Outcomes (POs)				Outo	amme comes Os)			
Course Out- comes (COs)	PO-1 Basi Discipline Specific Know- ledge	PO-2 Problem Analysis	PO-3 Design/ Develop- ment of Solutions	PO-4 Engi- neering Tools, Experime- ntation	PO-5 Engi- neering Practices For Society, Sustain- ability and Environ- ment	PO-6 Project Manage -ment	PO-7 Life Long Learn- ing	PSO - 1	PSO - 2
CO1	1	1	1	and the		1	2		2
CO2	1	3	2		- \ ·- \]	2	2		2
CO3	1	3	2		<u> </u>	2	2		2
CO4	1	5 3	2			2	2		2
CO5	1	3	2			2	2		2

IX. Suggested COs - POs Matrix Form:

Legends: - High:03, Medium:02, Low:01, No Mapping: --

X. Suggested Learning Materials / Books:

Sr. No.	Title	Author, Publication, Edition and Year of Publication	ISBN NO.
1	Core Python Programming	R. Nageswara Rao, Dreamtech Press,	978-9390457151
2	Learning Python	Mark Lutz, O'Reilly Media, Inc,	978-1449355739
3	Python Basics	David Amos, Dan Bader, Joanna Jablonski, Fletcher Heisler, Real Python,	978-1775093329
4	Taming Python by Programming	Dr. Jeeva Jose, Khanna Book Publishing CO(P) LTD, New Delhi,	978-9386173348
5	Python Programming	Rupesh Nasre, AICTE, [Online available on AICTE e-Kumbh]	978-8195986354

XI. Learning Websites & Portals

Sr. No.	Link / Portal	Description
1	https://ekumbh.aicte-india.org/allbook.php	Python Programming
2	https://python-iitk.vlabs.ac.in/	Python Programming Lab

Government Polytechnic, Mumbai		Instrumentation Engineering	
3	<u>https://spoken-tutorial.org/tutorial-</u> <u>search/?search_foss=Python+3.4.3&search_language=Engli</u> <u>sh</u>	Introduction to Python and control flow statements, Data Structures in Python, Function and module	
4	https://onlinecourses.nptel.ac.in/noc19_cs41/preview	Python Programming Course	
5	https://infyspringboard.onwingspan.com/web/en/app/toc/1e x_auth_0130944397935001602592_shared/overview#error =login_required&state=5baee827-1544-4440-88bb-	Python for Beginners	
6	https://wiki.python.org/moin/BeginnersGuide	Basics of Python	
7	https://www.tutorialspoint.com/python_pandas/index.htm	Python pandas package	
8	https://www.programiz.com/pythonprogramming/objectorie nted-programming	OOP using Python	
9	www.khanacademy.org	Chapter 3-5 theory topics	
10	www.tinkercad.com	One can build and simulate the circuit	

XII. Academic Consultation Committee/Industry Consultation Committee:

Sr. No.	Name	Designation	Institute/Organization
1	Ms. Priyanka Khadtare	Software development Engineer	Nykaa Pvt. Ltd.
2	Mr. Badshah Mulla	Lecturer in Computer Engg.	Government Polytechnic, Miraj
3	Mrs. Neha Vachhani	Lecturer in Computer Engg.	Government Polytechnic, Mumbai
4	Mrs. S.T. Shinde	Lecturer in Instrumentation	Government Polytechnic, Mumbai

ESTD. 1960

Coordinator, Curriculum Development, Department of Instrumentation Engg.

Head of Department Department of Instrumentation Engg.

Incharge, Curriculum Development Cell Government Polytechnic, Mumbai

Principal Government Polytechnic, Mumbai