

Government Polytechnic, Mumbai

Department of Mechanical Engineering

P19 Outcome-based Curriculum (Sandwich Pattern)

Transform Knowledge into work

Government Polytechnic, Mumbai

Vision

Transform knowledge into work

Mission

We are committed for:

- Quality education for lifelong learning.
- Need based educational programmes through different modes.
- Outcome based curriculum implementation.
- Development and up gradation of standard laboratory practices.
- Promoting entrepreneurial programmes.

We believe in ethical, safety, environment friendly practices and teaching learning innovations.

Mechanical Engineering Department

Vision

Promoting Sustainable development of students

Mission

Department of Mechanical engineering is committed to:

- > Need based curriculum revision.
- > Provide opportunity for lifelong learning through continuing education.
- Blend the latest technology with conventional practices through experiential learning.
- > Enhance industry institute interaction.
- > Promote entrepreneurial capabilities.

We believe in high ethical and moral values, sincerity, transparency, and concern for environment.

Department of Mechanical Engineering

PROGRAM OUTCOMES (POS)

- 1. **Basic and Discipline specific knowledge:** Apply knowledge of basic mathematics, science and engineering fundamentals and engineering specialization to solve the engineering problems.
- 2. **Problem analysis:** Identify and analyse well-defined engineering problems using codified standard methods.
- 3. **Design**/ **development of solutions:** Design solutions for well-defined technical problems and assist with the design of systems components or processes to meet specified needs.
- 4. Engineering Tools, Experimentation and Testing: Apply modern engineering tools and appropriate technique to conduct standard tests and measurements.
- 5. Engineering practices for society, sustainability and environment: Apply appropriate technology in context of society, sustainability, environment and ethical practices.
- 6. Project Management: Use engineering management principles individually, as a team member or

a leader to manage projects and effectively communicate about well-defined engineering activities.

7. Life-long learning: Ability to analyse individual needs and engage in updating in the context of technological changes.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

Programme Educational Objective statements describe the expected accomplishments of diploma holders during their first few years (three to five years) of exposure in the industrial working environment.

PEO1: Provide solutions to mechanical engineering problems adapting professional ethics in considerations with environmental and societal concerns.

PEO2: Adopt state-of-the-art technologies to work in multidisciplinary environment through self-learning for enhancing technical & entrepreneurial abilities.

PEO3: Pursue sustainable development through life-long learning, upgrade professional skills to work individually as well as an effective team member, in the world of work.

PROGRAM SPECIFIC OUTCOME (PSO'S)

- PSO1: To model, analyse, design, and realize physical systems, components or processes in the field of mechanical engineering.
- > **PSO2:** Use and maintain mechanical systems / processes in the world of work.

Government Polytechnic Mumbai

Curriculum Philosophy

(P19 Outcome based Curriculum)

(Sandwich Pattern)

Preface

The quality of technical education is dependent on a well-developed curriculum. The curriculum should not focus only on technical contents but it should impart necessary skills that help students to learn how to copewith new challenges. It should prepare them for lifelong learning once they enter the workforce. It is very necessary that the diploma students should be well updated with the latest technological skills and advancements, to meet industrial demands and contribute to nation building. With this thought we have designed outcome based curriculum keeping in view the latest industry trends and market requirements. Outcome based curriculum will be offered to students 2019 onwards. Outcome based curriculum is student centric rather than teacher centric. It is comprising of basic science and engineering having focus on fundamentals, significant discipline level courses and electives. Six month Inplant training is also included in the curriculum to make the student understand industry requirements, have hands on experience and take up project work relative to industry in their final year. These features will allow the students to develop problem solving approach to face the challenges in real life.

In outcome based education, Programme Outcomes, Programme specific outcomes, Course outcomes are defined first and then course contents are designed to achieve these outcomes. During curriculum implementation the teacher will analyze the contents and then develop the learning experiences which will ensure accomplishment of outcome. The industry experts, being main stake holders are actively involved, while designing the curriculum. Outcomes are validated by industry experts, so it will produce industry ready pass outs and increase the employability of students.

Salient features of this curriculum are

- Outcome based curriculum with well defined outcomes for each course
- Incorporation of six month Inplant training
- Built in flexibility to the students in terms of elective courses
- Course on Entrepreneurship and Start-up to encourage entrepreneurial skills
- More weightage for practical's in terms of contact hours to increase skill component
- Student Centered Activity in first, second and third semester to inculcate the habit of physical and mental fitness right at the start
- One MOOCin each semester in order to inculcate self learning capability in students.

• A list of experiments with clear outcomes.

The New Curriculum has been designed to better meet the needs of the industry considering evolving technological trends and implications for the engineering workforce. This curriculum is also expected to enhance employability skills and develop well trained Diploma Engineers who have the knowledge and the skills to get engineering solutions for real-world problems.

I gratefully acknowledge the time and efforts of all those who contributed to design the curriculum, especially the contributions of chairperson and members of Board of Studies and Programmewise Board of Studies. I acknowledge all the stake holders, aluminies and subject experts.

(Mrs. Swati Deshpande) Principal Government Polytechnic Mumbai

Outcome Based Education Philosophy

As the National Board of Accreditation (NBA)is focusing on the adoption of Outcome Based Education (OBE) approach, Government Polytechnic, Mumbai has adopted the OBE approach for design of curriculum P19 to all programmes. NBA adopted Outcome based Model because, OBE is "Student Centric" rather than "Teacher Centric". OBE focuses on the graduate attributes or outcomes after completing an academic programme. Outcome based approach means knowingwhat you want to achieve and then taking the steps to do so.Starting with a clear picture of what is important for students to be able to do and then organizing the curriculum delivery and assessment to make sure learning happens.

Some Benefits of OBE are

- 1. Satisfying the need of stake holders
- 2. More specific and coherent curriculum
- 3. Student centric

Components of the OBE are

- 1. Outcome based curriculum: What students should be able to do after learning the curriculum?
- 2. Outcome based Teaching Learning: Prepare and train the students to achieve the outcomes.
- 3. Outcome based assessment: Measure what the student has achieved? Indentify which outcome has not attained by the students.
- 4. Remedial measures: Take the remedial measures so that student can achieve that outcome.

Fig1. Outcome Based Education Philosophy

Figure 1 shows outcome based education philosophy. Vision and mission statements willbe finalized first, and then each programme will finalize Programme educational objectives (PEOs). Programme outcomes (POs) are given by NBA. Each programme will finalize their Programme Specific Outcomes (PSOs). Then course outcomes (COs) are finalized and then content detailing of each course will be carried out.

Figure 2 shows our curriculum design process/philosophy. Figure is self explanatory. Important steps are given below. Process starts with formulation of vision mission statements of the institute.

1. Formulation of Vision Mission Statements

Vision Mission statements of the institute are finalized using following steps.

- Bottoms up approach
- Involvement all stakeholders
- Discussion, Brain storming sessions among all stake holders
- Gap analysis or SWOT analysis
- Challenges before the institute
- What are the immediate and long term goals

After following these steps vision and mission statements of the institute is finalized as

Institute Vision

Transform Knowledge into Work

Institute Mission

We are committed for

- Quality education for lifelong learning
- Need based educational programmes through different modes.
- Outcome based curriculum implementation
- Development and up gradation of standard laboratory practices
- Promoting entrepreneurial programmes

We believe in ethical, safety, environmental friendly practices and teaching learning innovations.

Once, the vision mission statements are finalized. Using the same procedure vision mission statements of each programmes are finalized.

2. Programme Educational Objectives (PEOs)

The Programme educational objectives of a diploma program are the statements that describe the expected achievements of diploma holders in their career, and also in particular, what they are expected to perform and achieve during the first few years after diploma. The PEOs, may be guided by global and local needs, vision of the Institution, long term goals etc.For defining the PEOs the faculty members of the program have continuously worked with all Stakeholders: Local Employers, Industry, Students and the Alumni

3. Programme Outcomes (POs)

Programme outcomes are given by NBA. They are

1. **Basic and Discipline specific knowledge:** Apply knowledge of basic mathematics, science and engineering fundamentals and engineering specialization to solve the engineering problems.

2. **Problem analysis:** Identify and analyzewell defined engineering problems using codified standard methods.

3. **Design/ development of solutions:** Design solutions for well-defined technical problems and assist with the design of systems components or processes to meet specified needs.

4. Engineering tools experimentation and testing: Apply modern engineering tools and appropriate technique to conduct standard test and measurements.

5. Engineering practices for society sustainability and environment: apply appropriate technology in context of society sustainability environment and ethical practices

6. **Project management:**Use Engineering Management principles individually, as a team member or a leader to manage projects and effectively communicate about well-defined engineering activities.

7. **Life-long learning:** Ability to analyze individual needs and engage in updating in the context of technological changes

4. Programme Specific Outcomes (PSOs)

These outcomes are specific to a program in addition to NBA defined POs, namely, Civil, Computer, Electrical, Electronics, Mechanical, Information Technology, Instrumentation, Rubber Technology, Leather Technology, and Leather Goods and Footwear technology.

5. Course Outcomes (COs) and Content detailing

"Statements of observable student actions that serve as evidence of the Knowledge, Skills and Attitudes acquired in a course". Each course is designed to meet (about 4 to 6) Course Outcomes The Course Outcomes are stated in such a way that they can be actually measured. "Blooms Taxonomy" is used for framing course outcomes.

Course Outcome statementsare broken down into two main components:

- An action word that identifies the performance to be demonstrated;
- Learning statement that specifies what learning will be demonstrated in the performance; Once the COs are finalized, content detailing of each course is done as per the course outcomes. For content detailing inputs are taken from stake holders, MSBTE curriculum and industry persons.

6. CO-PO and CO-PSO mapping

When all COs are finalized, COs are mapped with POs and PSOs. During mapping if it is found that particular PO or PSO has not been addressed by any CO, then it is considered as gap. To remove this gap, again COs are modified. This process will repeat till all POs and PSOs are mapped by COs.

7. Approval in PBOS and BOS meetings.

After CO-PO and CO-PSO mapping, content detailing is done. Then the curriculum is kept for approval in Programme wise Board of studies (PBOS) meeting. Each programme has its own PBOS committee whose structure is as follows.

Head of Department concerned	Chairman
Two senior Lecturers	Members
One expert from the neighboring institute	Member
Nominee from the board of technical Education	Member

One expert from the local industry Member Departmental Curriculum Coordinator Member Secretary Suggestions given by PBOS members are incorporated in the curriculum and then it is put in front

of Board of studies (BOS). Structure of BOS is as follows.

Representative from Indus	try	Chairman
Principal		Member
Head of All departments		Member
Local Experts of all progra	ammes	Member
Nominee from the board o	f technical Education	Member
In charge CDC	Member Secretary	

Suggestions given by BOS members are incorporated in the curriculum and the finalized curriculum is then offered to the students.

8. Institute Policies

As per the guidelines given by All India Council of Technical Education (AICTE), Maharashtra State Board of Technical Education (MSBTE), Directorate of Technical Education (DTE) and NBA, Institute policies about curriculum design are decided in the meeting of all Heads of the departments.

Being an autonomous institute, we revise our curriculum after every 4 to 5 years. Earlier it was revised in 2016. Curriculum 2016 was outcome based curriculum. As per instructions received from AICTE and NBA, Outcome based curriculumshould be offered to students, we have offeredOutcome based curriculumin 2016. In 2019, we have conducted search conference in all departments to identify set of skill components that should be developed in students at the end of the diploma programme. Here we got suggestions from industry experts as well as from stakeholders about incorporation of six month Inplant training in the curriculum itself to give awareness about industry culture to students. So in 2019 we revised our curriculum. It is outcome based with six months Inplant training. We got approval from AICTE also. So now all courses are sandwich pattern. This scheme we name as P19 scheme. In 2019 it will be offered to first year and in subsequent years it will be offered to second year and third year. Once the curriculum frame work is finalized at the institute level, as per the demand of the industry, course contents can be

changed at any level without disturbing the frame work. This is necessary to satisfy the present demand of the industry and remove the curricula gaps as per the advancement in technology. 2019curriculum is of 180 credits (215 teaching hours). As per AICTE norms given in APH 2015-16, contact hours per semester should be 525 hours and number of teaching days should be 75 in a semester (7 hours per day i.e. 35 hours per week). Total weeks for teaching are 15. One week will be for unit test exam. Total term will be of 16 week.

So we decided to design 2019 curriculum with 180 credits.

Definition of Credit:

1 Hr. Lecture (L) per week 1 credit

- 1 Hr. Tutorial (T) per week 1 credit
- 2 Hours Practical (P) per week 2 credit

All programmes (Civil Engineering, Computer Engineering, Electrical Engineering, Electronics Engineering, Information Technology, Instrumentation, Mechanical Engineering, Rubber Technology, Leather Technology, Leather Goods and Footwear Technology) have incorporatedsix month Inplant training in their curriculum, wherein students will go for Inplant training in the industries during last semester. 20 credits (40 teaching hours per week) are allotted for Inplant training.

Curriculum Framework

Semester wise Credit distribution and Mark distribution is given below.

Year	Semester	Credits	Teaching	Marks
			hours	
First	First	30	35	600 to 700
	Second	30	35	600 to 700
Second	Third	30	35	600 to 700
	Fourth	35	35	700 to 800
Third	Fifth	35	35	700 to 800
	Sixth	20	40	200
Total		180	215	3400 to 3900

Curriculum Frame work for All Programmes

Apart from technical courses, in first 3 semesters, 5 teaching hours per week are allotted for Student Center Activities. Breakup of these five hours is as follows.

Library - 1 hr

Sports -2 hrs

Creative arts – 2 hrs

In order to inculcate self learning capability in students MOOC (Massive Open Online Course) in each semester is incorporated in the curriculum of all programmes.

As per AICTE model curriculum 60% weightage is given for external examination and 40% weightage is given for internal examination as far as theory is considered. For all courses in all programmes 60+20+20 pattern of examination is followed. Two internal progressive assessment tests are conducted for theory courses in a semester having maximum marks 20. End semester examination of 60 Marks is conducted at the end of the semester. Addition of two test marks with end semester examination marks will give total marks out of 100.

After test as well as end term examination bitwise analysis of answer book of each student will be done in order to calculate course outcome attainment. From course attainment, PO and PSO attainment will be calculated. If attainment is not satisfactory remedial measures will be taken by respective department.

For courses, those they are having practical's, Term work is kept, where continuous assessment is made compulsory.

In the sixth semester, students are going for Inplant training. Before going into industry at least he/she should learn basic things required for his/her programme. In order to achieve this, a prerequisite of minimum 100 credits is must for registration of Inplant training. A student will be eligible for registration of Inplant training only when he/she completes minimum 100 credits.

Award of Diploma

For the award of diploma in all programmes, all courses of 5th semester and Inplant training will be considered along with weightage of third and fourth semester courses as shown in following table.

All courses of fifth semester	700 to 800 Marks
Inplant Training	200 Marks
Consolidated marks of third and fourth	200 marks
semester*	
Total marks	1100 to 1200 Marks

*Consolidated Marks of third and fourth semester – the total marks of third and fourth semesters are converted to 100 marks each. These marks are then added $(3^{rd}Sem + 4^{th}sem)$ as 100+100 = 200 marks.

Implementation of MOOC:

In each semester all programmes will offer a MOOC. Programme head should see that this MOOC is freely available to all students; it should not be financial bourdon on students. Sufficient number of lectures/sessions should be available for the course which is offered through MOOC. For 1 credit per week one lecture or one session of 45 minutes to 60 minutes should be available.

For MOOC courses online examination is conducted by service provider for example spoken tutorial. Spoken tutorial will issue certificates also. Programme head should collect certificates of all students semester wise and submit to controller of examination.

As exam is conducted by some other agency, marks are not taken into consideration. They will not reflect in the result. But unless and until student complete certification, credits of MOOC will not be awarded to the students. Without completion of 180 credits diploma will not be awarded.

Student can complete MOOC at any time throughout of this tenure of diploma. Course or exam registration of student in any semester will not be blocked due to incompletion of MOOC. Whenever student completes certification, in that term, in the result of term end examination credits will be allotted.

If a MOOC is performed through NPTEL, course is free but for getting certification, student has to pay extra fees. In such a case, to avoid financial bourdon on students, MCQ based examination of such courses will be conducted by respective departments and certification can be provided by respective department. For certification, passing criteria of 40% should be used.

Course Codes:

Entire curriculum of all Programmes is divided into five levels. These levels and their percentage is given below.

- Level1- Science and Humanities (10 to 15%)
- Level2- Core Technology (25 to 30%)
- Level3- Applied Technology (45 to 50%)
- Level4- Diversified Courses (5 to 10%)
- Level5- Management courses (3 to 5%)

Course Coding Scheme:-

Course Code abbreviations	Definitions
HU	Humanities
SC	Science
MG	Management
CE	Civil
СО	Computer
EC	Electronics
EE	Electrical
IT	Information Technology
IS	Instrumentation
RT	Rubber
LT	Leather Technology
LG	Leather Goods and Footwear
ME	Mechanical Engineering

Course codes are formed as:

First two letters are course code abbreviations. Then two digits "19" refers to 2019 curriculum. Next digit is level number and last two digits are serial number from that level.

For example: HU19101 (Communication Skill)

- HU- It belongs to Level 1 Science & humanities
- 19- 2019 curriculum
- 1- Level 1
- 01- Sr. No of Level 1 courses.

180 Credit Scheme P-19 Level Wise Marks Distribution

P-19 curriculum scheme is divided into 5 levels.

Level 1: Science & Humanities

Level 2: Core Technology Courses

Level 3: Applied Technology Courses

Level 4: Diversified Courses

Level 5: Management Courses

The distribution of credits and marks with reference to course levels is as given in following table.

Level No	Level	Credits	Percentage of Credits	Marks	Percentage of Marks
1	Science & Humanities	33	18.33%	650	17.1%
2	Core Technology Courses	55	30.55%	1300	34.21%
3	Applied Technology Courses	77	42.78	1600	42.10%
4	Diversified Courses	13	7.22%	250	6.58%
5	Management Courses	2	1.11	-	
	Total	180		3800	

List of Courses (Level wise)

Course Code	Course Title	Credits	Marks	
Level 1: Scien	Level 1: Science & Humanities			
SC19109	Basic Mathematics	4	100	
HU19101	Communication Skill	4	150	
SC19107	Engineering Chemistry	5	150	
ME19102	Libre Office Suite (Spoken	1		
	Tutorial)	4	-	
SC19102	Engineering Physics	5	150	
SC19110	Engineering Mathematics	4	100	
ME19103	Environmental Studies	ſ		
	(MOOC)	2	-	
ME19101	English	5	-	
	Total	33	650	

Course Code	Course Title	Credits	Marks
Level 2: Core	Technology Courses		
ME19201	Engineering Drawing I	6	100
WS19201	Workshop Practice	4	50
ME19204	Safety Practices	3	50
ME19209	Fundamentals of Electrical and Electronics Engineering	7	150
AM19201	Engineering Mechanics	5	150
ME19202	Engineering Drawing II	6	150
ME19203	Manufacturing Processes	6	150
ME19210	Strength of Mechanical Materials	5	125
ME19205	Basic Thermodynamics	4	125
ME19206	Theory of Machines	5	125
ME19207	Fluid Mechanics & Machinery	4	125
	Total	55	1300
Level 3: Appl	ied Technology Courses		
ME19301	Machine Drawing & Computer Aided Drafting	4	50
ME19309	Materials Technology	5	150
ME19304	Power Engineering and Refrigeration & Air Conditioning	5	125
ME19306	Advanced Manufacturing Processes	5	150
ME19307	Production & Industrial Engineering	5	125
ME19312	Basics of Mechatronics	5	125
ME19310	Metrology & Quality Control	5	150
ME19305	CNC Machines & Automation	5	125
ME19302	Industrial Hydraulics and Pneumatics	5	125
ME19311	Design of Machine Elements	5	125
ME19303	Solid Modeling	4	50
ME19308	Project	4	100
ME19313	In-Plant Training	20	200
	Total	77	1600
Level 4: Diver	rsified Courses		
ME19401	C Programming (Spoken Tutorial)	3	-
	Optional Course I		
ME19402	Automobile Engineering		
ME19403	Mathematics for Mechanical Engineers	5	125
ME19404	Non Conventional Energy Resources	5	125

Course Code	Course Title	Credits	Marks
	Optional Course II		
ME19405	Tool Engineering		
ME19406	Industrial Maintenance	5	125
ME19407	Inventory Control		
	Total	13	250
Level 5: Mana	agement Courses		
ME19501	Entrepreneurship	2	-
	Development &	5	
	Management		
	Total	2	-
	Grand Total	180	3800

P19 Scheme Marks Analysis

Sr.No.	Details of Marks	Marks	Percentage
1	Total Marks as per scheme	3800	-
2	Theory	2400	63.16%
3	PR/OR/ TW	1400	36.84%
4	Total	3800	100%

Semester wise Distribution of Credits and Marks

Following table gives semester wise distribution of credits and marks for curriculum of Diploma in Mechanical Engineering.

Sr.	Semester	Credits	Marks
1	Semester I	30	600
2	Semester II	30	700
3	Semester III	30	700
4	Semester IV	35	800
5	Semester V	35	800
6	Semester VI	20	200
	Total	180	3800

Course Code	Correct Title		
Course Code	Course little		Course Marks
0.010100	Seme	ster I	100
SC19109	Basic Mathematics	4	100
HU19101	Communication Skill	4	150
SC19107	Engineering Chemistry	5	150
ME19201	Engineering Drawing I	6	100
WS19201	Workshop Practice	4	50
ME19204	Safety Practices	3	50
ME19102	Libre Office Suite (Spoken	4	-
	lutorial)	20	(00
	lotal	<u> </u>	600
0.010102	Semes	ster II	150
SC19102	Engineering Physics	5	150
SC19110	Engineering Mathematics	4	100
ME19209	Fundamentals of Electrical		150
AM(10201	and Electronics Engineering	5	150
AM19201	Engineering Mechanics	3	150
ME19202	Engineering Drawing II	0	150
ME19401	C Programming (Spoken	3	-
	Total	30	700
	Total	tor III	700
ME19203	Manufacturing Processes	6	150
ME19203	Strength of Mechanical	5	130
1011217210	Materials	5	123
ME19205	Basic Thermodynamics	4	125
ME19205	Theory of Machines	5	125
ME19200	Machine Drawing &	4	50
11119501	Computer Aided Drafting	, i	20
ME19207	Fluid Mechanics &	4	125
	Machinery		
ME19103	Environmental Studies	2	-
	(MOOC)		
	Total	30	700
	Semes	ter IV	
ME19309	Materials Technology	5	150
ME19402	Automobile Engineering		
ME19403	Mathematics for Mechanical		
	Engineers	5	125
ME19404	Non Conventional Energy		
	Resources		
ME19304	Power Engineering and	5	125
	Refrigeration & Air		
	Conditioning		
ME19306	Advanced Manufacturing	5	150
	Processes		
ME19307	Production & Industrial	5	125
	Engineering		
ME19312	Basics of Mechatronics	5	125

List of Courses (Semester wise)

Course Code	Course Title	Credit	Course Marks
ME19101	English	5	-
	Total	35	800
	Seme	ster V	
ME19405	Tool Engineering		
ME19406	Industrial Maintenance	5	125
ME19407	Inventory Control		
ME19310	Metrology & Quality Control	5	150
ME19305	CNC Machines & Automation	5	125
ME19302	Industrial Hydraulics and Pneumatics	5	125
ME19311	Design of Machine Elements	5	125
ME19303	Solid Modeling	4	50
ME19308	Project	4	100
ME19501	Entrepreneurship Development & Management	2	-
	Total	35	800
Semester VI			
ME19313	In-Plant Training	20	200
	Total	20	200
	Grand Total	180	3800

(Academically Autonomous Institute, Government of Maharashtra)

Teaching and Examination Scheme (P19)

With effect from AY 2019-20

Programme: Diploma in Mechanical Engineering (Sandwich Pattern)

Course		Tea	aching] H	Hours/ Iours	Contact		Examination Scheme (Marks)						
Course	Course Title					Credits	Theory		у				
Coue		L	Р	TU	Total		TH	TS1	TS2	PR	OR	TW	Total
SC19109	BASIC MATHEMATICS	4	90	AL	4	4	60	20	20				100
HU19101	COMMUNICATION SKILLS	2	2	-	4	4	60	20	20	25*		25	150
SC19107	ENGINEERING CHEMISTRY	3	2	14	5	5	60	20	20	25*		25	150
ME19201	ENGINEERING DRAWING -I	2	4		6	6				50*		50	100
WS19201	WORKSHOP PRACTICE	4	4	7	4	4						50	50
ME19204	SAFETY PPRACTICES	1	2		3	3	-				25	25	50
ME19102	LIBRE OFFICE SUITE		1#	5	1	1#	1						
	(Spoken Tutorial)	17.6	4#	1	0.0.0	4#							
	Total	12	18		30	30	180	60	60	100	25	175	600
	Student Centered Activity (SCA)				05								
	Total Contact Hours		•		35		u		•				J

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment) * Indicates assessment by External Examiner else internal practical skill test, #indicates self, on- line learning Mode, @ indicates on line examination Note: Duration of Examination--TS1&TS2 -1 hour, TH- 2 hours 30 min, PR/OR – 3 hours per batch, SCA- Library -1 hour, Sports- 2hours, Creative Activity-2 hours

indicates Self, on- line learning Mode through MOOCs/Spoken Tutorials /NPTEL/SWAYAM/FOSSEE etc.

Department Coordinator, Curriculum Development, Dept. of Mechanical Engineering Head of Department Dept. of Mechanical Engineering In-Charge Curriculum Development Cell Principal

Term / Semester -I

(Academically Autonomous Institute, Government of Maharashtra)

Teaching and Examination Scheme (P19)

With effect from AY 2019-20

Programme: Diploma in Mechanical Engineering (Sandwich Pattern)

G		Tea	aching I	Hours/ Hours	Contact	Credits	Examination Scheme (Marks)						
Course	Course Title						Theory						
Coue		L	Р	TU	Total		TH	TS1	TS2	PR	OR	TW	Total
SC19102	ENGINEERING PHYSICS	3	2	41	65	5	60	20	20	25*		25	150
SC19110	ENGINEERING MATHEMATICS	4	3	1	4	4	60	20	20				100
ME10200	FUNDAMENTALS OF ELECTRICAL			14	18								
ME19209	& ELECTRONICS ENGINEERING	3	4	- 2 <u>02</u>	7	12	60	20	20	25		25	150
AM19201	ENGINEERING MECHANICS	3	2		5	5	60	20	20	25		25	150
ME19202	ENGINEERING DRAWING-II	3	3		6	6	60	20	20			50	150
ME19401	C PROGRAMMING (Spoken Tutorial)		3#	2	3	3							
	Total	16	14		30	30	300	100	100	75		125	700
	Student Centered Activity (SCA)				05								
	Total Contact Hours				35								

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment)

* Indicates assessment by External Examiner else internal practical skill test, #indicates self, on- line learning Mode, @ indicates on line examination Note: Duration of Examination--TS1&TS2 -1 hour, TH- 2 hours 30 min, PR/OR – 3 hours per batch, SCA- Library -1 hour, Sports- 2hours, Creative Activity-2 hours

indicates Self, on- line learning Mode through MOOCs/Spoken Tutorials /NPTEL/SWAYAM/FOSSEE etc.

Department Coordinator, Curriculum Development, Dept. of Mechanical Engineering Head of Department Dept. of Mechanical Engineering In-Charge Curriculum Development Cell Principal

Term / Semester -II

(Academically Autonomous Institute, Government of Maharashtra)

Teaching and Examination Scheme (P19)

With effect from AY 2019-20

Programme: Diploma in Mechanical Engineering (Sandwich Pattern)

C		Tea	aching I	Hours/ Hours	Contact		Examination Scheme (Marks)						
Course	Course Title					Credits	Theory						
Coue		L	Р	TU	Total		TH	TS1	TS2	PR	OR	TW	Total
ME19203	MANUFACTURING PROCESSES	2	4	NA.	6	6	60	20	20	25*		25	150
ME19210	STRENGTH OF MECHANICAL MATERIALS	3	2		5	5	60	20	20			25	125
ME19205	BASIC THERMODYNAMICS	2	2	No.	4	4	60	20	20			25	125
ME19206	THEORY OF MACHINES	3	2		5	5	60	20	20			25	125
ME19301	MACHINE DRAWING & COMPUTER AIDED DRAFTING	4	4	P	4	4				25*		25	50
ME19207	FLUID MECHANICS AND MACHINERY	2	2	Œ	4	. 4	60	20	20			25	125
ME19103	ENVIRONMENTAL STUDIES		2#		2	2	7						
	Total	12	18		30	30	300	100	100	50		150	700
	Student Centered Activity (SCA)				05								
	Total Contact Hours				35								

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment)

* Indicates assessment by External Examiner else internal practical skill test, #indicates self, on- line learning Mode, @ indicates on line examination Note: Duration of Examination--TS1&TS2 -1 hour, TH- 2 hours 30 min, PR/OR - 3 hours per batch, SCA- Library -1 hour, Sports- 2hours, Creative Activity-2 hours

Indicates Self, on- line learning Mode through MOOCs/Spoken Tutorials /NPTEL/SWAYAM/FOSSEE etc.

Department Coordinator, Curriculum Development, Dept. of Mechanical Engineering Head of Department Dept. of Mechanical Engineering In-Charge Curriculum Development Cell Principal

Term / Semester -III

(Academically Autonomous Institute, Government of Maharashtra)

Teaching and Examination Scheme (P19)

With effect from AY 2019-20

Programme: Diploma in Mechanical Engineering (Sandwich Pattern)

Term / Semester -IV

C		Tea	aching H	Hours/ Hours	Contact			Ex	aminati	on Sche	eme (M	arks)	
Course	Course Title					Credits	Theory		у				
Coue		L	Р	TU	Total		TH	TS1	TS2	PR	OR	TW	Total
ME19309	MATERIALS TECHNOLOGY	3	2	1.2.2	5	5	60	20	20	25*		25	150
ME19402 ME19403 ME19404	Optional Course-I <i>(Select any One)</i> AUTOMOBILE ENGINEERING MATHEMATICS FOR MECHANICAL ENGINEERS NON CONVENTIONAL ENERGY RESOURCES	3	2		3/5	5	60	20	20			25	125
ME19304	POWER ENGINEERING AND REFRIGERATION & AIR CONDITIONING	3	2	P	5	5	60	20	20			25	125
ME19306	ADVANCED MANUFACTURING PROCESSES	3	2	Ŧ	5	5	60	20	20	25*		25	150
ME19307	PRODUCTION AND INDUSTRIAL ENGINEERING	3	2		5	5	60	20	20			25	125
ME19312	BASICS OF MECHATRONICS	3	2		5	5	60	20	20			25	125
ME19101	ENGLISH	1	5#		5	5							
	Total	18	17		35	35	360	120	120	50		150	800
	Total Contact Hours				35								

 Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment)

 * Indicates assessment by External Examiner else internal practical skill test, #indicates self, on- line learning Mode, @ indicates on line examination

 Note:
 Duration of Examination--TS1&TS2 -1 hour, TH- 2 hours 30 min, PR/OR – 3 hours per batch, SCA- Library -1 hour, Sports- 2hours, Creative Activity-2 hours

indicates Self, on- line learning Mode through MOOCs/Spoken Tutorials /NPTEL/SWAYAM/FOSSEE etc.

Department Coordinator, Curriculum Development, Dept. of Mechanical Engineering Head of Department Dept. of Mechanical Engineering In-Charge Curriculum Development Cell Principal

(Academically Autonomous Institute, Government of Maharashtra)

Teaching and Examination Scheme (P19)

With effect from AY 2019-20

Programme: Diploma in Mechanical Engineering (Sandwich Pattern)

Term / Semester -V

		Tea	aching] H	Hours/ Hours	Contact		Examination Scheme (Marks)						
Course	Course Title					Credits	Theory						
Code		L	Р	TU	Total		TH	TS1	TS2	PR	OR	TW	Total
ME19405	Optional Course-II <i>(Select any One)</i> TOOL ENGINEERING	3	90	YTE	CHA	2							
ME19406	INDUSTRIAL MAINTENANCE	3	2		5	5	60	20	20			25	125
ME19407	INVENTORY CONTROL		100	K.F.		12	0						
ME19310	METROLOGY & QUALITY CONTROL	3	2	17	5	5	60	20	20	25*		25	150
ME19305	CNC MACHINES & AUTOMATION	3	2		5	5	60	20	20			25	125
ME19302	INDUSTRIAL HYDRAULICS AND PNEUMATICS	3	2		5	5	60	20	20			25	125
ME19311	DESIGN OF MACHINE ELEMENTS	3	2	1-	5	5	60	20	20			25	125
ME19303	SOLID MODELLING	ý	4		4	4				25*		25	50
ME19308	PROJECT	<u>14-8</u>	_4		4	4					50*	50	100
ME19501	ENTREPRENUERSHIP DEVELOPMENT & MANAGEMENT	X	2#		2	2							
	Total	15	20		35	35	300	100	100	50	50	200	800
	Total Contact Hours	•			35				•			-	

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment)

* Indicates assessment by External Examiner else internal practical skill test, #indicates self, on- line learning Mode, @ indicates on line examination Note: Duration of Examination--TS1&TS2 -1 hour, TH- 2 hours 30 min, PR/OR – 3 hours per batch, SCA- Library -1 hour, Sports- 2hours, Creative Activity-2 hours

indicates Self, on- line learning Mode through MOOCs/Spoken Tutorials /NPTEL/SWAYAM/FOSSEE etc.

Department Coordinator, Curriculum Development, Dept. of Mechanical Engineering Head of Department Dept. of Mechanical Engineering In-Charge Curriculum Development Cell Principal

(Academically Autonomous Institute, Government of Maharashtra) Teaching and Examination Scheme (P19) With effect from AY 2019-20

Programme: Diploma in Mechanical Engineering (Sandwich Pattern)

	1 8	0\												
Course		Teaching Hours/Contact Hours				Examination Scheme (Marks)								
Course Course Title							Credits	Theory						
Code			Total		TH	TS1	TS2	PR	OR	TW	Total			
ME19313	INPLANT TRAINING			40		40	20					100*	100*	200
		Total		40		40	20					100	100	200
Total Contact Hours					40									

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment) * Indicates assessment by External Examiner else internal practical skill test, #indicates self, on- line learning Mode, @ indicates on line examination Note: Duration of Examination--TS1&TS2 -1 hour, TH- 2 hours 30 min, PR/OR – 3 hours per batch, SCA- Library -1 hour, Sports- 2hours, Creative Activity-2 hours

KNOWLEDGE

indicates Self, on- line learning Mode through MOOCs/Spoken Tutorials /NPTEL/SWAYAM/FOSSEE etc.

Department Coordinator, Curriculum Development, Dept. of Mechanical Engineering Head of Department Dept. of Mechanical Engineering In-Charge Curriculum Development Cell Principal

Term / Semester -VI

Award of Diploma (Courses for Award of Diploma)

For the award of diploma in Mechanical Engineering programme, all courses of 5th semester and In-Plant training will be considered along with weightage from third semester to fourth semester courses as shown in following table-

Sr. No.		Marks
1	All courses of V th Semester	800
2	In plant Training	200
3	Consolidated marks of third and	200
	fourth semester*	
	Total Marks	1200

*Consolidated Marks of third and fourth semester: – the total marks of third and fourth semesters are converted to 100 marks each. These marks are then added (3^{rd} Sem + 4^{th} sem) as 100+100 = 200 marks.

Direct Second Year Admitted Students Backlogs:

The students admitted directly to second year have varied academic background. Hence they are required to complete some courses from previous semesters. The following is the guideline for the backlog courses **but the actual decision for backlog courses may vary from case to case of students, depending upon their academic background.**

Sr.	Academic Background	Backlog Course	Credit	Semester in
No.				which the course
				is offered
	HSC (Science with Phy/	ME19202,	6	II Sem
1	Chem/ Maths)	Engineering		
		Drawing-II		
2	ITI	SC19109, Basic	4	I Sem
2.		Mathematics		
		SC19109, Basic	4	I Sem
		Mathematics		
3	HSC Vocational	ME19202,	6	II Sem
		Engineering		
		Drawing-II		

Department of Mechanical Engineering Government Polytechnic, Mumbai

Course Equivalence for P16 & P19 Schemes

GOVERNMENT POLYTECHNIC, MUMBAI
MECHANICAL ENGINEERING DEPARTMENT
Course Equivalence chart (P-2016 Scheme V/S P-2019 scheme)

	First Semester										
	P-201	6 SCHEME	Equiva	llence in P-2019 Scheme							
Sr. No	Course Code	Name of Course	Course	Name of Course	Remark						
			Code								
01	HU16101	Basics of Communications	HU19101	Communication Skills	Sem I						
02	SC16107	Mathematics I	SC19109	Basic Mathematics	Sem I						
03	SC16105	Engineering Chemistry	SC19107	Engineering Chemistry	Sem I						
04	WS16201	Workshop Practice	WS19201	Workshop Practice	Sem I						
05	ME16201	Engineering Drawing I	ME19201	Engineering Drawing-I	Sem I						
06	HU16103	Generic Skills			No equivalent course in P19. Should be completed across the table.						
07	HU16104	Environmental Studies	HU19102	Environmental Studies	Shifted from Sem I to Sem III						
08	CO16201	Computer Fundamentals			No equivalent course in P19. Should be completed across the table.						
09	NC16101	Yoga (Noncredit course)			No equivalent course in P19						
10	NC16102	Social Work (Noncredit course)			No equivalent course in P19						
11			ME19204	Safety Practices	New course induced in P19						
12			ME19102	MOOC I Libre Office Suit	New course induced in P19						

Head of Department, Mechanical Engineering

MECHANICAL ENGINEERING DEPARTMENT Course Equivalence chart (P-2016 Scheme V/S P-2019 scheme)

	Second Semester										
	P-2	2016 SCHEME	Equiva	lence in P-2019 Scheme							
Sr.	Course	Name of Course	Course Name of Course		Remark						
No	Code		Code								
01	HU16102	Communication Skills			No equivalence. Should be completed across the table.						
02	SC16104	Engineering Physics	SC19102	Engineering Physics	Sem II						
03	SC16108	Mathematics II	SC19110	Engineering Mathematics	Sem II						
04	ME16202	Engineering Drawing II	ME19202	Engineering Drawing - II	Sem II						
05	EE16203	Electrical Technology			No equivalence. Should be completed across the table.						
06	AM16201	Engineering Mechanics	AM19201	Engineering Mechanics	Sem II						
07	CO16202	C - Programming			No equivalence. Should be completed across the table.						
08			ME19209	Fundamentals of Electrical and Electronics Engineering	New course induced in P19						
09			ME19401	MOOC II C Programming (Spoken tutorial)	New course induced in P19						

Head of Department, Mechanical Engineering Mumbai

GOVERNMENT POLYTECHNIC, MUMBAI MECHANICAL ENGINEERING DEPARTMENT Course Equivalence chart (P-2016 Scheme V/S P-2019 scheme)

Third Semester					
	P-2016 SCHEME		Equivalence in P-2019 Scheme		
Sr. No	Course Code	Name of Course	Course Code	Name of Course	Remark
01	ME16308	Hydraulic Machines	ME19207	Fluid Mechanics And Machinery	Sem III
02	EC16210	Fundamentals of Electronics			No equivalence. Should be completed across the table.
03	AM16204	Strength of Materials	ME19210	Strength Of Mechanical Materials	Sem III
04	ME16205	Basic Thermodynamics	ME19205	Basic Thermodynamics	Sem III
05	ME16204	Theory of Machines	ME19206	Theory Of Machines	Sem III
06	ME16301	Machine Drawing			No equivalence. Should be completed across the table.
07			ME19301	Machine Drawing & Computer Aided Drafting	New course induced in P19
08			ME19103	MOOC III Environmental Studies	New course induced in P19

Head of Department, Mechanical Engineering Mumbai

GOVERNMENT POLYTECHNIC, MUMBAI MECHANICAL ENGINEERING DEPARTMENT Course Equivalence chart (P-2016 Scheme V/S P-2019 scheme)

Fourth Semester					
P-2016 SCHEME			Equivalence in P-2019 Scheme		
Sr. No	Course Code	Name of Course	Course Code	Name of Course	Remark
01	ME16401	Industrial Hydraulics and Pneumatics	ME19302	Industrial Hydraulic & Pneumatics	Shifted to fifth semester
02	ME16307	Production and Industrial Engineering	ME19307	Production And Industrial Engineering	Sem IV
03	ME16304	Applied Thermodynamics			No equivalence. Should be completed across the table.
04	ME16305	Manufacturing Process	ME19203	Manufacturing Processes	Shifted to third semester
05	ME16302	Computer Aided Drafting			No equivalence. Should be completed across the table.
06	ME16309	Physical Metallurgy & Materials	ME19309	Materials Technology	Sem IV
07	MG16502	Entrepreneurship Development			No equivalence. Should be completed across the table.
08			ME19402	Automobile Engineering	New course induced in P19
09			ME19403	Mathematics For Mechanical Engineers	New course induced in P19
10			ME19404	Non-Conventional Energy Resources	New course induced in P19

Fourth Semester						
P-2016 SCHEME		Equivalence in P-2019 Scheme				
Sr.	Course	Name of Course	Course Code	Name of Course	Remark	
INO	Code			Power engineering and		
11			ME19304	Refrigeration and Air conditioning	New course induced in P19	
12			ME19101	MOOC IV English	New course induced in P19	

Head of Department, Mechanical Engineering Mumbai

GOVERNMENT POLYTECHNIC, MUMBAI MECHANICAL e. DEPARTMENT

Course Equivalence chart (P-2016 Scheme V/S P-2019 scheme)

Fifth Semester						
P-2016 SCHEME			Equivalence in P-2019 Scheme			
Sr.	Course	Name of Course	Course	Name of Course	Remark	
No	Code		Code			
01	ME16402	Refrigeration and Air- Conditioning & Automobile Engineering			No equivalence. Should be completed across the table. Should be completed across the table.	
02	ME16403	Tool Engineering	ME19405	Tool Engineering	Sem V	
03	ME16404	Power Plant Engineering			No equivalence. Should be completed across the table.	
04	ME16310	Metrology and Quality Control	ME19310	Metrology & Quality Control	Sem V	
05	ME16306	Advanced Manufacturing Processes	ME19306	Advanced Manufacturing Processes	Shifted to fourth semester	
06	MG16501	Industrial Organization and Management			No equivalence. Should be completed across the table.	
07	ME16312	Project	ME19308	Project	Sem V	
08	ME16303	Solid Modeling	ME19303	Solid Modeling	Sem V	
09	ME16311	Design of Machine Elements	ME19311	Design of Machine Elements	Sem V	
10	ME16406	Basics of Mechatronics	ME19312	Basics of Mechatronics	Shifted to fourth semester	
11			ME19406	Industrial Maintenance	New course induced in P19	
12			ME19407	Inventory Control	New course induced in P19	

	Fifth Semester						
P-2016 SCHEME		Equivalence in P-2019 Scheme					
Sr.	Course	Name of Course	Course	Name of Course	Remark		
No	Code		Code				
13			ME19305	CNC Machines & Automation	New course induced in P19		
14			ME19501	MOOC V Entrepreneurship Development & Management	New course induced in P19		

Head of Department, Mechanical Engineering Mumbai
GOVERNMENT POLYTECHNIC, MUMBAI MECHANICAL ENGINEERING DEPARTMENT Course Equivalence chart (P-2016 Scheme V/S P-2019 scheme)

	Sixth Semester									
	P-2	2016 SCHEME	Equival	ence in P-2019 Scheme						
Sr.	Course	Name of Course	Course	Name of Course	Remark					
No	Code		Code							
01	ME16405	In-plant Training	ME19313	In-Plant Training	Sem VI					

Head of Department,	Principal,
Mechanical Engineering	Government Polytechnic,
	Mumbai

Policy for Course Detention P19

If the theory attendance of the student in any course in a semester is less than 75% and practical attendance is less than 100% (student has not completed all the prescribed practicals and not submitted the Term Work), he/she will be detained in that course at the end of the semester. Such student will not be allowed to appear for end semester examination of that course. Such students need to do course registration of that course again as per detention rules given below. Student has to satisfy the attendance and Term work criterion. After that he/she will be allowed for examination of that course. Rules of detention are as follows

- If a student is detained in any course of first year, he/she will not be eligible for second year admission, till he/she will not clear his/her detention.
- If a student is detained in any course of second year, he/she will not be eligible for third year admission, till he/she will not clear his/her detention.
- However, if a student is detained in any course of Odd semester, he/she can register for detained courses (maximum 2) in even semester, by paying additional fees as per rules.
- If a student is detained in any course of Even semester, he/she can register for detained courses (maximum 2) in vacation semester, for which he/she needs to pay additional fees as per rules of vacation semester.
- Student will not be eligible for registration of Inplant training unless, he/she completes minimum 100 credits.
- MOOC courses are exempted from above rules.
- Detention rule is not applicable for First Year Backlog courses of Direct Second Year admitted students.

GOVERNMENT POLYTECHNIC MUMBAI

(Academically Autonomous Institute of Government of Maharashtra)

Department of Mechanical Engineering P19 Curriculum First Semester

GOVERNMENT POLYTECHNIC MUMBAI

(Academically Autonomous Institute, Government of Maharashtra)

Teaching and Examination Scheme (P19)

With effect from AY 2019-20

Programme: Diploma in Mechanical Engineering (Sandwich Pattern)

Course			Teaching Hours/Contact Hours				Examination Scheme (Marks)						
Course	Course Title					Credits	Theory						
Coue		L	Р	TU	Total		TH	TS1	TS2	PR	OR	TW	Total
SC19109	BASIC MATHEMATICS	4	90	AL	4	4	60	20	20				100
HU19101	COMMUNICATION SKILLS	2	2	-	4	4	60	20	20	25*		25	150
SC19107	ENGINEERING CHEMISTRY	3	2	14	5	5	60	20	20	25*		25	150
ME19201	ENGINEERING DRAWING -I	2	4		6	6				50*		50	100
WS19201	WORKSHOP PRACTICE	4	4	7	4	4						50	50
ME19204	SAFETY PPRACTICES	1	2		3	3	-				25	25	50
ME19102	LIBRE OFFICE SUITE		1#	5	1	1#	1						
	(Spoken Tutorial)	17.6	4#	1	0.0.0	4#							
	Total	12	18		30	30	180	60	60	100	25	175	600
	Student Centered Activity (SCA)				05								
	Total Contact Hours		•		35		u		•				J

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment) * Indicates assessment by External Examiner else internal practical skill test, #indicates self, on- line learning Mode, @ indicates on line examination Note: Duration of Examination--TS1&TS2 -1 hour, TH- 2 hours 30 min, PR/OR – 3 hours per batch, SCA- Library -1 hour, Sports- 2hours, Creative Activity-2 hours

indicates Self, on- line learning Mode through MOOCs/Spoken Tutorials /NPTEL/SWAYAM/FOSSEE etc.

Department Coordinator, Curriculum Development, Dept. of Mechanical Engineering Head of Department Dept. of Mechanical Engineering In-Charge Curriculum Development Cell Principal

Term / Semester -I

Program	Programme : Diploma in CE/ME/IT/CO/EC/IS/EE(Sandwich Pattern)											
Course	Code: S	SC1910	9	Course Title: BASIC MATHEMATICS								
Compulsory / Optional: Compulsory												
Teachi	ng Sche	eme and	l Credits	Examination Scheme								
L	Р	TU	Total	TH (2 Hrs. 30 Min.)	TS1 (1 Hr)	TS2 (1Hr)	PR	OR	TW	Total		
04	-	-	04	60	20	20	-	-	-	100		

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2-Term Tests, PR- Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination Note: For Minimum passing marks under various heads, refer, examination rule AR26. Two practical skill tests are to be conducted. First skill test at midterm and second skill test at the end of the term

Rationale:

This subject is kept under the branch of sciences. This subject intends to teach student basic facts ,concepts, principles, and procedure of mathematics as a tool to analyze engineering problems and as such lays down foundation for understanding the engineering and core technology subject.

1960

ESTEN

Course Outcomes: Student should be able to

CO1	Identify the basic principles of mathematics about the field analysis of any engineering problem.
CO2	Apply rules ,concept and properties to solve the basic problems.
CO3	Establish relation between two variables.

OWIEDC

Course Content Details:

Unit No	Topics / Sub-topics										
1	 1.Trigonometry: 1.1 Trigonometric ratios of allied angles, compound angles, multiple. angles (2A, 3A), Sub multiple angles 1.2 Factorization and De-factorization Formulae 1.3 Inverse Circular function (definition and simple problems). Course Outcome: CO1 Teaching Hours : 10 hrs Marks: 10 (R- 4, U-4, A-2) 2.Vectors: 										
2	 2.Vectors: 2.1 Definition of vector , position vector 2.2 Algebra of vectors(Equality, addition, subtraction and scalar multiplication) 2.3 Dot (Scalar) product & Vector (Cross) product with properties. Course Outcome: CO3 Teaching Hours : 10 hrs Marks: 10 (R-2, U-4, A-4) 3.Logarithms: 										
3	 3.Logarithms: 3.1 Definition of logarithm 3.2 Laws of logarithm 3.3 simple examples based on laws. Course Outcome: CO2 Teaching Hours : 10hrs Marks:10 (R-4, U-4, A-2) 										
4	 4.Probability: 4.1 Definition of random experiment, sample space, event, occurance of event and types of event (Impossible, mutually exclusive, exhaustive, equally likely) 4.2 Definition of Probability 4.3 Addition & Multiplication Theorems of probability without proof, simple examples 										
5	 5.Determinants:- 5.1 Definition of Determinant 5.2 Expansion of Determinant of order 2X3 5.3 Crammer's rule to solve simultaneous equations in 3 unknowns Course Outcome: CO2 Teaching Hours :10 hrs Marks:10 (R-2, U-4, A-4) 										
6	 6.Matrices: 6.1 Definition of a matrix of order m x n 6.2 Types of matrices 6.3 Algebra of matrices - equality, addition, subtraction , multiplication & scalar multiplication. 6.4 Transpose of matrix. 6.5 Minor , co-factor of an element. 6.6 Adjoint & inverse of a matrix by adjoint method. 6.7 Solution of a simultaneous equations by matrix inversion method. Course Outcome: CO3 Teaching Hours : 10 hrs Marks: 10 (R- 2, U- 4, A- 4) 										

 ${}^{\rm Page}Z$

Suggested Specifications Table (Theory):

Unit		Distribution of Theory Marks					
No	Topic Title	R Level	U Level	A Level	Total Marks		
1	Trigonometry	04	04	02	10		
2	Vectors	02	04	04	10		
3	Logarithms	04	04	02	10		
4	Probability	04	04	02	10		
5	Determinants	02	04	04	10		
6	Matrices	02	04	04	10		
	Total	18	24	18	60		

References/ Books:

Sr. No.	Title	Author, Publisher, Edition and Year Of publication	ISBN
1	Mathematics for Polytechnic Students	S.P.Deshpande, Pune Vidyavardhini Graha Prakashan	-
2	Mathematics for Polytechnic Students (Volume I)	H.K.Dass, S.Chand Prakashan	9788121935241
3	Companions to Basic Maths	G.V.Kumbhojkar, Phadke Prakashan	10-B07951HJDQ 13-B07951HJDQ
4	Applied Mathematics	N.Raghvendra Bhatt late, Tata McGraw Hill Publication Shri R Mohan Singh	9789339219567, 9339219562

E-References:

- 1. www.math-magic.com
- 2. <u>www.Scilab.org/-SCI</u> Lab
- 3. www.mathworks.com/Products/Matlab/-MATLAB
- 4. <u>www.wolfram.com/mathematica/-Mathematica</u>
- 5. <u>https://www.khanaacademy.org/math?gclid=CNqHuabCys4CFdoJaAoddHoPig</u>
- 6. www.dplot.com/-Dplot
- 7. www.allmathcad.com/-Math CAD
- 8. <u>www.easycalculation.com</u>
- 9. <u>https://www.vedantu.com/ncert-solutions/ncert-solutions-class-12-maths</u>
- **10.** MYCBSEGUIDE

CO Vs PO and CO Vs PSO Mapping (CIVIL ENGINEERING)

Basic Mathematics(SC19109)

(Approved Copy)

P-19 Scheme

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3			2			1	1		1
CO2	3	2					1	1		1
CO3	3			2			1	1		1

CO Vs PO and CO Vs PSO Mapping (MECHANICAL ENGINEERING)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2		
CO1	3			2			1	1			
CO2	3	2					1	1			
CO3	3			2			1	1			
CT VIOLATE R.D.											

CO Vs PO and CO Vs PSO Mapping (COMPUTER ENGINEERING)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3		B	2	-	NTV	-1	1		
CO2	3	2	6		Palar	- 11	1	31		
CO3	3		0	2	W	197	1	01		

CO Vs PO and CO Vs PSO Mapping (INFORMATION TECHNOLOGY)

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3			2	WOWL.	Dar	1	1		1
CO2	3	2					1	1		1
CO3	3			2			1	1		1

CO Vs PO and CO Vs PSO Mapping (ELECTRONICS ENGINEERING)

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3			2			1		1	1
CO2	3	2					1		1	1
CO3	3			2			1		1	1

Basic Mathematics(SC19109)

CO Vs PO and CO Vs PSO Mapping (ELECTRICAL ENGINEERING)

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3			2			1		1	
CO2	3	2					1		1	
CO3	3			2			1		1	

CO Vs PO and CO Vs PSO Mapping (INSTRUMENTATION ENGINEERING)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	3			2			1	1	1
CO2	3	2					1	1	1
CO3	3			2		1000	1	1	1

Industry Consultation Committee:

Sr. No	Name	Designation	Institute/Organisation
1	Neelamkumar R. Sawant	State Head Technical Services for (Maharashtra and Goa)	JSW Cement ltd. Mumbai Head Office
2	Mrs. Deepawali S. kaware	Lecturer in Mathematics	Government polytechnic Vikaramgad
3	Mr. A.S.Patil	Lecturer in Mathematics	Government polytechnic Mumbai
4	Mr.V.S.Patil	Lecturer in Mathematics	Government polytechnic Mumbai

Coordinator, Curriculum Development, Head of Department

Department of Science And Humanities

Department of Science And Humanities

I/C, Curriculum Development Cell

Principal

Basic Mathematics(SC19109)

(Approved Copy)

Progra	Programme : Diploma in CE/ME/IT/CO/IS/EE/EC/LG/LT									
Course	Course Code: HU19101 Course Title: Communication Skills (Sandwich Pattern)									
Compul	Compulsory / Optional: Compulsory									
Teachi	ng Sche	eme and	l Credits	Examination Scheme						
TH	PR	TU	Total	TH (2 Hrs.TS1TS2 (1 Hr)PRORTWTotal30(1 Hr)(1Hr)PRORTWTotal					Total	
02	02	-	04	60	20	20	25*	-	25	150

Abbreviations: TH- Theory; PR-Practical; TU-Tutorial; TS1 and TS2- Term Tests; OR-Oral Exam; TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal assessment

Note: For Minimum passing marks under various heads, refer, examination rule AR26.

Rationale: In this age of globalization, competition is tough. Hence effective communication skills are important. Communication skills play a vital and decisive role in career development. The subject of Communication Skills introduces basic concepts of communication. It also describes the verbal, non-verbal modes and techniques of oral & written communication. It will guide and direct to develop a good personality and improve communication skills. Students will be able to utilize the skills necessary to be a competent communicator. This will help the students to select and apply the appropriate methods of communication in various situations.

OWI EDO

Course Outcomes: Student should be able to

CO1	Apply proper communication technique to cope up with the challenges of the modern world.
CO2	Interpret feedback at various situations by using appropriate body language and avoid the
	barriers in effective communication.
CO3	Able to participate in Group Discussion and Acquire the practical knowledge of an
	interview.
CO4	Able to develop PowerPoint Presentation and Business correspondence.
CO5	Write letters, circulars, memos, notices, reports and communicate effectively in written
	communication.

Course Content Details:

Unit No	Topics / Sub-topics						
	Introduction to Communic	ation					
	1.1 Elements of Communicat	tion					
	1.2 Communication Cycle						
	1.3 Types of communication						
	1.4 Definition and Types of	Barriers-					
1	a)Mechanical						
•	b)Physical						
	c)Language	A POLYTECHA	e				
	d)Psychological	Star I	3				
	1.5 How to overcome Barrie	ers					
	Commo Orthogram CO1	Tracking Harmed has					
	Course Outcome: COI	l eaching Hours :6 hrs	Marks: 14 (K- 2, U-4, A-8)				
	Non-verbal Communicatio						
	2.1 Meaning and importance of Non-verbal Communication						
	2.2 Body Language						
2	2.3 Aspects of Body Languag	ge	S ²				
	2.4 Graphic language	WOWLEDGE TO					
	Course Outcome: CO2	Teaching Hours :6 hrs	Marks: 12 (R- 4, U-4, A-4)				
	Group Discussion And Inte						
	3.1 Need and Importance of (Group Discussion					
3	3.2 Use of Knowledge and L	ogical sequence.					
	3.3 Types of Interview						
	3.4 Preparing for an Interview	N					
	Course Outcome: CO3	Teaching Hours •6 hrs	Marks: 10 (R-2, U-4, A-4)				
	Presentation Skills	reaching nours to ms					
Δ	4.1 Presentation Skills - Tips	s for effective presentation					
-	4.2 Guidelines for developing	g PowerPoint presentation					
	Course Outcome: CO4	Teaching Hours :4 hrs	Marks: 08 (R- 2, U-2, A-4)				

	Business Correspondence								
	5.1 Office Drafting – a) Notice b) Circular c) Memo								
	d) Email-writing.								
5	5.2 Job Application with resume.								
e	5.3 Business Letters – a) Enquiry b)Order c)Complaint								
	5.4 Report Writing – a) Fall in Production b) Accident Report								
	POLYTECH								
	Course Outcome: CO5 Teaching Hours: 8 hrs Marks: 16 (R- 4, U-4, A-8)								

Suggested Specifications Table (Theory):

Unit No	on CERTIN	Distribution of Theory Marks					
	Topic Title	R Level	U Level	A Level	Total Marks		
1	Introduction to Communication	2	4	8	14		
2	Non- verbal Communication	4	4	4	12		
3	Group Discussion And Interview Skills	2	4	4	10		
4	Presentation Skills	2	2	4	8		
5	Business Correspondence	4	4	8	16		
Total		14	18	28	60		

List of experiments: Any 10 experiments out of 15

Sr. No.	Unit No	List of Experiments	СО	Hours
		PART A- GRAMMAR EXERCISES		
1		Articles	CO1	02
2		Preposition and Conjunction	CO1	02
3		Change the voice	CO1	02
4		Direct Indirect Speech	CO1	02
5		Vocabulary Building	CO1	02
		ROLYTECH IN		

Communication Skills (HU

P-19 Scheme

		PART B - COMMUNICATION SKILLS – PRACTICE		
6	1	Conversation between students on various situations.	CO1,CO4	02
7	3	Non- Verbal Communication.	CO2,CO4	02
8	3	Group Discussion	CO3,CO4	02
9	4	Mock Interview	CO3,CO4	02
10	5	Business Communicationa) Advertisement, Tender, Diary writing.b) Job Application With Resume.	CO4,CO5	02
11	1	Communication Barriers	CO1	02
12	5	Business Letters – a) Enquiry b)Order c)Complaint	CO5	02
13	4	Speeches- a)Welcome Speech b)Farewell Speech c) Vote of Thanks	CO1,CO4	02
14	5	Report Writing – a) Fall in Production b) Accident Report	CO5	02
15	All	Showing Videos on different types of Communication.	CO4	02
		Total		30

Note: Experiments No. 1 to 10 are compulsory and should map all units and Cos. Remaining experiments are to be performed on the importance of topic/availabilityoftime.

References/ Books:

Sr.	Title	Author, Publisher, Edition and	ISBN
No.		Year Of publication	
1	Communication Skills	Joyeeta Bhattacharya - Reliable	9780000176981,
		Series	0000176982
2	Communication Skills	Sanjay Kumar, PushpaLata-	13: 978-0199488803
		Oxford University Press	
3	Successful presentation Skills	Andrew Brad bury- The Sunday	13: 9780749456627
		Times	

E-References:

- 1. Website: www.mindtools.com/page8.html-99k
- 2.Website:www.inc.com/guides/growth/23032.html-4

- 3. Website: www.khake.com/page66htm/-72k
- 4. Website: www.BM Consultant India Consultant India.Com
- 5. https://www.vedantu.com/ncert-solutions/ncert-solutions-class-12-English
- 6. MYCBSEGUIDE
- 7. Website: <u>www.letstak.co.in</u>

CO Vs PO and CO Vs PSO Mapping (CIVIL ENGINEERING)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	3	2	3	2	3	2	1	2	1
CO2	3	3	2	3	2	3	2	1	2	1
CO3	3	2	2	<1 ⁹	2	3	2	1	2	1
CO4	3	3	2	1	2	3	2	1	2	
CO5	3	3	2	1	2	3	2	1	2	

CO Vs PO and CO Vs PSO Mapping (MECHANICAL ENGINEERING)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	3	3	2	3	2	3	2	2	1
CO2	3	3	2	3	2	3	2	2	1
CO3	3	2	2.	1	2.0	3	2	2	1
CO4	3	3	2		2	3	2	2	1
CO5	3	3	2	1	2	3	2	2	1

CO Vs PO and CO Vs PSO Mapping (ELECTRONICS ENGINEERING)

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	3	2	3	2	3	2	2	2	
CO2	3	3	2	3	2	3	2	1	2	1
CO3	3	2	2	1	2	3	2	1	1	1
CO4	3	3	2	1	2	3	2	1		
CO5	3	3	2	1	2	3	2	1		

CO Vs PO and CO Vs PSO Mapping (ELECTRICAL ENGINEERING)

	СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
--	----	-----	-----	-----	-----	-----	-----	-----	------	------	------

Communication Skills (HU19101)

CO1	3	3	2	3	2	3	2	1	2	3
CO2	3	3	2	3	2	3	2	2		3
CO3	3	2	2	1	2	3	2	2		3
CO4	3	3	2	1	2	3	2	1		2
CO5	3	3	2	1	2	3	2			

CO Vs PO and CO Vs PSO Mapping (INSTRUMENTATION ENGINEERING)

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	3	3	2	3	2	3	2	1	2
CO2	3	3	2	3	2	3	2	1	2
CO3	3	2	2	_1	2	3	2	1	2
CO4	3	3	2	P	2	3	2		2
CO5	3	3	2	1	2	3	2		
		A work	1.1	1253	150	100	51		

CO Vs PO and CO Vs PSO Mapping (COMPUTER ENGINEERING)

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	3	2	3	VL2DC	3	2	1	2	1
CO2	3	3	2	3	2	3	2	1	2	1
CO3	3	2	2	1	2	3	2	1	2	1
CO4	3	3	2	1	2	3	2		2	
CO5	3	3	2	1	2	3	2		2	

CO Vs PO and CO Vs PSO Mapping (INFORMATION TECHNOLOGY)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	3	2	3	2	3	2	2	1	1
CO2	3	3	2	3	2	3	2	2	1	1
CO3	3	2	2	1	2	3	2	1		2
CO4	3	3	2	1	2	3	2	1		
CO5	3	3	2	1	2	3	2	1		

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	3	2	3	2	3	2	1		2
CO2	3	3	2	3	2	3	2	1		2
CO3	3	2	2	1	2	3	2	1	1	2
CO4	3	3	2	1	2	3	2	1		2
CO5	3	3	2	1	2	3	2	1		2

CO Vs PO and CO Vs PSO Mapping (LG/LT ENGINEERING)

Industry Consultation Committee:

Sr. No	Name	Designation	Institute/Organisation
1	Neelamkumar R. Sawant	State Head Technical Services for (Maharashtra and Goa)	JSW Cement ltd. Mumbai Head Office
2	Mrs.S.S. Kulkarni	Lecturer in English	Government Polytechnic Pune
3	Mrs. K.S.Pawar	Lecturer in English	Government polytechnic Mumbai
3	N.N.Dhake	Lecturer in English	Government polytechnic Mumbai

Coordinator,

Curriculum Development,

Head of Departments

Department of Science And Humanities_____

Department of Science And Humanities

I/C, Curriculum Development Cell

Principal

Program	Programme : Diploma in CE/ME(Sandwich Pattern)										
Course Code: SC19107				Course Title: Engineering Chemistry							
Compul	Compulsory / Optional: Compulsory										
Teaching Scheme and Credits			Examination Scheme								
L	Р	TU	Total	THTS1TS2(2.30(1TS2Hrs.)Hr.)(1Hr)							
3	2		5	60 20 20 25* 25 150							

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination

Note: For Minimum passing marks under various heads, refer, examination rule AR26. Two practical skill tests are to be conducted. First skill test at midterm and second skill test at the end of the term.

Rationale:

The subject is included under category of basic sciences. The role is to understand the fundamental concepts and facts about infrastructure of physical matters and their interrelationship. This will provide input for better understanding of other foundation and technology subjects

ONTECN

Course Outcomes: Student should be able to

CO1	Apply the principles of chemistry under different engineering situations.
CO2	Apply various applications of electrolysis in engineering field.
CO3	Illustrate various methods of softening of hard water
CO4	Adopt methods of prevention of corrosion for environmental and safety concerns.
CO5	Select suitable Lubricants, material for a particular use effectively.

Course Content Details:

Unit No	Topics / Sub-topics
1	 Atomic Structure 1.1 Introduction of atom, Molecules, Fundamental Particles, Proton, Neutron, Electron. their mass, charge, location. And symbol Bohr's theory, Postulates, Structure of modern atom. 1.2 Atomic number and atomic mass number. Atomic weight Numerical based on atomic number & atomic mass number 1.3 Rules governing filling up of atomic orbitals, Quantum no.Paulis Exclusion Principle, Aufbau's Principle, Hund's rule. Electronic configuration of atoms up to atomic number 30 1.4 Valence and chemical bonding. Valence: Definition, & examples. Types of valance :Electrovalence & Co-valance 1.5 Electrovalent bond: Definition, Formation. Formation of NaCl 1.6 Co-valent bond : Definition & formation Formation of following molecules Single bond:, Chlorine. Double bond : Oxygen, Triple Bond : Nitrogen, 1.7 Distinction between electrovalent and covalent compound. Course Outcome: CO1 Teaching Hours : 8 hrs Marks: 10 (R- 2, U-4, A-4)
2	 Electrochemistry 2.1 Definition of Electrochemistry, Electrolytes: Definition, Types. Differences between Atom and ion. Definition of ionization & electrolytic dissociation, Arrhenius theory, Degree of ionization with factors affecting it. 2.2 Terms related to Electrolysis Mechanism of electrolysis. Examples of: mechanism of Electrolysis of CuSO 4 by using Cu electrodes. 2.3 Faradays First law and its mathematical derivation. Faradays second law & its mathematical derivation, Numerical based on laws of Faraday. 2.4 Application of Electrolysis: Electroplating.
3	 Water 3.1 Sources of water, impurities present in water.(suspended, dissolved, colloidal, biological) Types of water: hard & soft Causes of hardness of water Types of Hardness, Unit of hardness, Definition of hardness. 3.2 Bad effects of Hard Water for Domestic purposes.& Industrial purposes (Textile ,Dyeing, Sugar industry, Bakery) 3.3 Bad effects of hard water in Boiler, Scales and Sludge's, causes of their formation, their disadvantages and their removal. 3.4 Treatment of hard water for drinking purposes by Zeolite &Ion Exchange process 3.5 Treatment of hard water for drinking purposes.(city water supply) Various steps: Screening, Sedimentation, Coagulation, Filtration, Sterilization by boiling. 3.6 pH value: Definition, Formula, pH scale, its salient features, Numerical based on pH, Applications of pH related to Engg .field (corrosion of bridges, Electroplating.).

	Course Outcome: CO3 Teaching Hours : 8 hrs Marks: 10 (R-2, U-4, A-4)
	Corrosion
4	 4.1 Definition of corrosion. Types of corrosion. Atmospheric & Electrochemical Corrosion. 4.2 Mechanism of atmospheric corrosion, types of oxide films formed,(stable, unstable, volatile, with examples) 4.3 Electrochemical corrosion/immersed corrosion Definition. Example. Factors Affecting, Atmospheric & Electrochemical Corrosion. 4.4 Protection of metals from Corrosion:- By protective coatings a) organic coating (Paints and Varnishes), b) inorganic coating (Metallic Coating) 4.5 Different methods of Protective metallic coatings. A) Hot dipping (Galvanizing & Tinning) b) Sherardizing c) Metal Spraying
	Course Outcome: CO4 Teaching Hours :8 hrs Marks: 10 (R-2, U-4, A-4)
5	Lubricants .1 Definition of lubricant, example, functions of lubricant, classification of lubricants (solid, semi-solid and liquid) examples. Conditions under which each lubricant is used. 5.2 Lubrication: definition and types conditions under which each lubricant is used. Types of lubrications, Fluid film, Boundary, Extreme pressure lubrication. Definition, diagram & description of each type. 5.3 Characteristic of good lubricant A) Physical Characteristics • Viscosity • Viscosity • Volatility • Flash point & Fire Point • Cloud and Pour point B) Chemical Characteristics • Acidity /Neutralization no. • Emulsification Saponification value Course Outcome: CO5 Teaching Hours : 6 Marks: 10 (R-4, U-4, A-2)
6	 Nonmetallic Engineering Material 6.1 Definition of nonmetallic engineering materials 6.2 Plastic : definition , example Polymerization : definition ,Types of Polymerization addition and conde Addition polymerization : definition formation of polyethylene , Condensation-polymerization : definition Formation Of nylon-66 Types of plastic: thermo softening, thermo setting plastics, Differences between them. Compounding of plastic , Materials needed for it (pigments, fillers, Plasticizers

Accelerators etc.,) Properties and engineering applications of plastic.	
6.3 Rubber:	
definition of rubber (elastomer) Natural rubber : Basic unit in natural rubb	er(isoprene)
Occurrence & Processing of Latex .Drawbacks of natural Rubber, Vulcaniz	ation Of rubber:
Chemical reactions, ,Types of Rubber Synthetic rubber Importance ,differen	ice, Example B
rubber, Thiokol, Neoprene	-
Properties of rubber: Elasticity, Tack, Rebound , Abrasion resistance Appli	cations of rubber
6.4 Thermal insulating materials	
Definition, Examples Thermocole, Glass wool. Thermocole: Definition, Provide the Provide t	reparation,
Properties & uses, Glass wool: Definition, Preparation, Properties & use	s
Course Outcome: CO5 Teaching Hours : 7 hrs Marks: 10 (R-2,	U-6, A-2)

Suggested Specifications Table (Theory):

Unit		Distribution of Theory Marks					
No	Topic Title POLITEC	R Level	U Level	A Level	Total Marks		
1	Atomic Structure	02	04	04	10		
2	Electrochemistry	04	04	02	10		
3	Water	02	04	04	10		
4	Corrosion	02	04	04	10		
5	Lubricants	04	04	02	10		
6	Nonmetallic Engineering Materials	02	06	02	10		
	Total	16	26	18	60		

List of experiments:

Sr. No.	Unit No	СО	List of Experiments					
1	1	CO1	Introduction of chemistry laboratory &safety measures.	2				
2	2	CO2	Determination of conductivity of different electrolytes by using conductivity meter.	2				
3	3	CO3	Estimation of Chloride content from given water sample	2				
4	4	CO4	Estimation of percentage purity of iron from the given alloy sample	2				
5	5	CO5	To find out acid value of given lubricant	2				
6	1	CO1	Basic radicals : Cu ^{++,} Fe ⁺⁺ , Fe ^{+++,} Cr ⁺⁺⁺ , Mn ⁺⁺ , Ni ⁺⁺ , Zn ^{++,} Ca ^{++,} Ba ^{++,} Mg ⁺⁺ NH4 ⁺ Acidic Radicals: Cl ⁻ ,Br ⁻ ,I ⁻ ,CO ₃ , SO ₄ ,NO ₃	6				
7	2	CO2	Determination of electrochemical equivalent of copper by using cu -electrodes	2				
8	3	CO3	Find out the total hardness from given sample of water by EDTA method	2				
9	4	CO4	To Study Corrosion of Aluminum rod in acidic and basic medium and plot a graph of rate of corrosion.	2				
10	5	CO5	Determination of coefficient of viscosity of given oil (Glycerin) by using Ostwald's Viscometer	2				
11	3	CO3	To find out pH of different solutions using Lovibond comparator, pH paper, pH meter.	2				
12	4	CO4	Estimation of moisture content in given coal sample	2				
13	6	CO5	Preparation of phenol formaldehyde / Bakelite plastic	2				
			Total	30				

Note: Experiments No. 1 to 10 are compulsory and should map all units and Cos. Remaining experiments are to be perform on the basis of availability of time.

References/ Books:

Sr. No.	Title	Author, Publisher, Edition and Vear Of publication	ISBN
1	Engineering Chemistry	M.M. Uppal, Khanna Publisher, Delhi	978-81-7409-262-5
2	Polytechnic Chemistry	V.P. Mehta, Jain Brothers, Delhi	978-81-8360-093-X
3	Applied Chemistry	P.C. Jain, Monica Jain, Dhanpat Rai and Sons , Delhi	13: 9788187433170
4	Chemistry in Engineering and technology Volume 1 and 2	J.C. Kurlacose, J. Jairam Tata Mcgraw hill.	9780074517352

E-References:

- 1. www.chemistry.org 4.www.ferrofchemistry.com
- 2. <u>www.chemistryclassroom.com</u> 5.http;//hperchemistry.phastr.gsu.edu/hbase/hph.htm
- 3. www.youtube/chemistry
 - 6.www.sciencejoywagon.com/
- 7. https://www.vedantu.com/ncert-solutions/ncert-solutions-class-12-chemistry

CO Vs PO and CO Vs PSO Mapping (CIVIL ENGINEERING)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	2	1	2	2		0ľ		1	
CO2	3	2	1	2	102/L	D 2	1			
CO3	3	2	1	1	2	2	1		1	
CO4	3	2	1	2	2	2	1		1	
CO5	3	2	1	2	2	2	1			1

CO Vs PO and CO Vs PSO Mapping (MECHANICAL ENGINEERING)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	3	2	1	2	2	1	1	1	1
CO2	3	2	1	2	2	2	1	1	1
CO3	3	2	1	1	2	2	1	1	2
CO4	3	2	1	2	2	2	1	2	2
CO5	3	2	1	2	2	2	1	2	2

Sr.	Name	Designation	Institute/Organisation
No			
1	Neelamkumar R. Sawant	State Head Technical Services for (Maharashtra and Goa)	JSW Cement ltd. Mumbai Head Office
2	Mrs Vaishali Gokhale	Lecturer in Chemistry	Government Polytechnic Pune
3	Dr. Mrs. Smita Petkar Dhopate	Lecturer in Chemistry	Government Polytechnic Nagpur
4	Mrs J. V. Iyengar	Lecturer in Chemistry	Government Polytechnic Mumbai
5	Mrs S.M. Patil	Lecturer in Chemistry	Government Polytechnic Mumbai

EST

D

Approved Copy

Coordinator,

Curriculum Development,

Department of Sci. & Humanities

I/C, Curriculum Development Cell

Head of Departments Department of Sci. & Humanities

1960

Principal

Engineering Chemistry (SC19107)

Program	Programme : Diploma in Mechanical/Civil/ Engineering/Leather Technology (Sandwich Pattern)									
Course	Course Code:ME19201 Course Title: Engineering Drawing-I									
Compul	Compulsory / Optional: Compulsory									
Teachi	Teaching Scheme and Credits Examination Scheme									
L	Р	TU	Total	TH (2 Hrs 30min)	TS1 (1 Hr)	TS2 (1Hr)	PR	OR	TW	Total
02	04	-	06	-	-	-	50*	-	50	100

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination Note: For Minimum passing marks under various heads, refer, examination rule AR26. Two practical skill tests are to be conducted. First skill test at mid-term and second skill test at the end of the term.

Rationale:

Engineering drawing is the common graphical language of engineers, technicians and workers to express engineering ideas and concepts. Correct interpretation of engineering drawings is one of the basic duties of First Line Supervisors. Study of Engineering Drawing induces the concepts of accuracy and exactness of information necessary for the production of engineering component. It also develops judgements about distances and angles.

This basic course aims at building a foundation for the further courses in drawing and other allied subjects. This course is useful in developing imagination, drafting and sketching skills of the students.

CO1	Draw geometric figures and engineering curves using appropriate drawing instruments
CO2	Draw views of line and plane, by applying principles of first angle method of projections
CO3	Draw orthographic views of given object by applying principles of orthographic projections
CO4	Draw isometric view from given orthographic views, by applying principles of isometric projections
CO5	Draw the free hand sketches of given engineering objects/elements

Course Outcomes: Student should be able to

Course Content Details:

Unit No	Topics / Sub-topics									
1	 Principles of Drawing 1.1 Drawing instruments and their uses, Standard sizes of drawing sheets (ISO-A sand numbers(single stroke vertical), Conventions of lines and their applicati Scales (reduced, enlarge and full size), Methods of Dimensioning: Chain, coordinate dimensioning (Refer SP-46Codelatest Edition) 1.2 Simple Geometrical Constructions, Redrawing figures using above constructions 	series),letters ons, Drawing parallel and geometrical								
	Course Outcome- CO1 Teaching Hours – 04	Marks –06								

	Engineering Curves and Loc	i of Points									
	2.1 Method to draw Ellipse by A	2.1 Method to draw Ellipse by Arcs of Circle Method and Concentric Circle Method.									
	2.2 Method to draw Parabola and Hyperbola by Directrix and Focus Method.										
•	2.3 Methods to draw Involutes of circle and pentagon.										
Z	2.4 Methods to draw Cycloid,										
	2.5 Loci of Points of Single Slider Crank Mechanism with given specifications.										
		0 1									
	Course Outcome- CO1	Teaching Hours – 06	Marks –06								
	Projection of lines and planes	S	1								
	3.1 Concepts of Reference Plane	es and Projections, Views – Top, Front, Sic	le Views								
	3.2 Projections of Line inclined	to one reference plane (H.P/V.P) and limit	ted to both ends in one								
3	quadrant only.		. 1								
	3.3 Projections of simple planes	s of circular, square rectangular, rhombus	, pentagonal								
	and hexagonal shape, inclin	ed to one reference plane and perpendicu	ilar to other								
	Course Outcome- CO2	Teaching Hours – 06	Marks –10								
	Orthographic projections										
	4.1 Introduction to orthographic projections, Symbol of First Angle Projection, Conversion of										
	pictorial view into orthographic views – Top, Front and End View of objects containing plain										
	surfaces, slant surfaces, slots, ribs, cylindrical surfaces.										
4	(Fir	st Angle Projection Method Only)									
	4.2 Sectional Orthographic Views and conversion of pictorial view into sectional										
	4.3 Orthographic views										
	(Objects involving plain surfa	(Objects involving plain surfaces, slant surfaces, slots, ribs, cylindrical surfaces, threads etc.)									
	Course Outcome- CO3	Teaching Hours – 06	Marks –12								
	Isometric projections	No see									
	5.1 Isometric scale, Comparison of Natural Scale with Isometric Scale										
5	5.2 Conversion of Orthographic	Views into Isometric View/Projection									
	(Objects involving plain surfa	ces, slant surfaces, slots, ribs, cylindrica	l surfaces, holes etc.)								
	Course Outcome- CO4	Teaching Hours – 06	Marks –12								
	Free hand sketches										
	6.1 Drawing of proportional fre	ehand sketches of –									
	Different types of thread for	rms, nuts, bolts, screws, washers and four	ndation bolts (Rag and								
6	Lewis type)										
	(Teacher shall als	o explain use/ function of all the above el	ements)								
	Course Outcome- CO5	Teaching Hours – 02	Marks –04								

List of Sheets: All sheets compulsory

Sr. No.	Unit No	СО	List of Drawing Sheets	Hours
1	1	CO1	Basics of Engineering Graphics Drawing sheet containing types of lines, Lettering, Redrawing given figure, dimensioning and geometrical constructions	08
2	2	CO1	Engineering curves and loci points (minimum 4 problems)	08

Sr. No.	Unit No	СО	List of Drawing Sheets	Hours
3	3	CO2	Projections of Lines and Planes	08
4	4	CO3	Orthographic projections Using first angle method of projections (minimum 2 problems)	08
5	4	CO3	Sectional Orthographic projections Using first angle method of projection (minimum 2 problems)	08
6	5	CO4	Isometric Projection-I Using isometric scale (minimum 2 objects)	08
7	5	CO4	Isometric Projection-II To draw isometric views of objects including slots, holes and sloping faces (minimum 2 objects)	08
8	6	CO5	Free hand sketches To draw free hand sketches of different types of threads forms, nuts, bolts and screws, foundation bolts.	04
		Total		60

References/ Books:

S POLYTECH

<u>a</u>			ICDN
Sr.	Title	Author, Publisher, Edition and	ISBN
No.		Year Of publication	
1	Engineering drawing	N.D.Bhatt, Charotar Publishing House, 53 rd Edition, 2016	978-9380-3581-78
2	Engineering Graphics	P.J. Shah, S. Chand, revised edition,2014	978-8121-9296-79
3	Engineering Drawing	Amar Pathak, Wiley Publication,10 th Ed. 2010	978-9350-0401-64
4	Engineering drawing	D.Jolhe, Tata McGraw Hill Education, 1 st Ed, 2017	978-0070-6483-71
5	Textbook on engineering drawing	K.L.Narayan,P.Kannaiah, Scitech publications, 24 th reprint, 2010,	978-8183-7142-28
6	Engineering drawing practice For school and colleges	IS Code SP-46	-

E-References:

- 1. https://ocw.mit.edu.courses.drawing
- 2. https://nptel.in.courses.drawin
- 3. https://home.iiik.edp.ac.in

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	2	1	1	1	1	1	2	1	1
CO2	2	2	2	1	1	1	2	1	1
CO3	3	2	2	2	1	2	2	1	1
CO4	3	2	2	2	2	2	2	1	1
CO5	2	1	1	1	1	1	2	1	1

CO Vs PO and CO Vs PSO Mapping (Mechanical Engineering)

CO Vs PO and CO Vs PSO Mapping (Civil Engineering)

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	2	1	1	1	1	10	2	1	1	1
CO2	2	2	2	1	1	1	2	1	1	1
CO3	3	2	2	2	1	2	2	1	1	1
CO4	3	2	2	2	2	2	2	1	1	1
CO5	2	1	13	IES	T ₁ D.	196	2	1	1	1

CO Vs PO and CO Vs PSO Mapping (Leather Technology)

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	2	1	1	1	1	1	2	1	1	1
CO2	2	2	2	1	1	1	2	1	1	1
CO3	3	2	2	2	1	2	2	1	1	-
CO4	3	2	2	2	2	2	2	1	1	-
CO5	2	1	1	1	1	1	2	1	1	1

Sr.	Name	Designation	Institute/Organisation
No			
1	Mr. Ruhil Alwi	Sr. Executive	Coffee Day Beverages,
			Mumbai
2	Mr. A.S. Sangwikar	Lecturer in Mechanical	Govt. Polytechnic, Thane
		Engineering	
3	Mr. U.A. Agnihotri	Lecturer in Mechanical	Govt. Polytechnic, Mumbai
		Engineering	
4	Mr. E.C. Dhembre	Lecturer in Mechanical	Govt. Polytechnic, Mumbai
		Engineering	

Industry Consultation Committee:

Coordinator,

Head of Department

Department of Mechanical Engineering

Curriculum Development,

Department of Mechanical Engineering

I/C, Curriculum Development Cell

Principal

1960

EST

Ð

Engineering Drawing - I (ME19201)

Program	Programme : ME/CE/IS (Sandwich Pattern)									
Course Code: WS19201			Course Tit	le: Work	kshop Pra	ctice				
Compul	Compulsory / Optional: Compulsory									
Teaching Scheme and Credits			l Credits			Exami	nation So	cheme		
L	Р	TU	Total	TH (2 Hrs 30 minutes)	TS1 (1 Hr)	TS2 (1Hr)	PR	OR	TW	Total
-	4	-	4	-	-	-	-	-	50	50

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination Note: For Minimum passing marks under various heads, refer, examination rule AR26.

Rationale:

Workshop practice is the backbone of the real industrial environment which helps to develop and enhance relevant technical hand skills required by the technician working in the various engineering industries and workshops. The knowledge of basic shops like Wood working, Fitting, Welding, Plumbing and Sheet Metal shop is essential for technicians to perform their duties in industries. Irrespective of engineering stream, the use of workshop practices in day to day industrial as well domestic life helps to solve various minor but critical problems. Working in workshop develops the attitude of working in a group and the basis for safety awareness is created. This foundation course intends to impart basic know-how of various hand tools and their use in different sections of manufacturing. The students are advised to undergo each skill experience with remembrance, understanding and application with special emphasis on attitude of enquiry to know why and how for the various instructions and practices imparted to them in each hop. Furthermore the demonstration of CNC Machine will give feel of advancement in industry.

Course Outcomes: At the end of the course student will be able to:

CO1	Lay-outing of shop & Sketching of jobs, tools & equipment.						
CO2	Select appropriate tools, machinery, equipment and consumables for given application.						
CO3	Use & Operate hand tools, equipment and machinery in different shops.						
CO4	Prepare the simple jobs as per specification & drawing.						
CO5	Maintain workshop related tools, equipment and machineries.						

Course Content Details:

Unit No	Topics / Sub-topics
1	 Introduction to workshop 1.1 Workshop layout, Importance of various sections/shop of workshop, Types of jobs done in each shop. 1.2 Causes of accidents, general safety rules and work procedure in workshop, Safety signs and symbols, First Aid. 1.3 Fire, Causes of Fire, Basic ways of extinguishing the fire. Classification of fire, Firefighting equipment, fire Extinguishers and their types. 1.4 Issue and return system of tools, equipment and consumables.
2	 Smithy and Forging 2.1 Sketching, understanding the specifications, materials, various applications and methods used in Smithy and Forging shop along with use of tools like anvil, hammers, Swage block, tongs, chisels, flatters etc. 2.2 Demonstration of Smithy and Forging operations like bending, setting down, bulging, Upsetting etc. 2.3 Preparation of smithy & forging, job. 2.4 Safety precautions & Personal Protective Equipment Course Outcome: CO1,CO2,CO3,CO4, CO5 Teaching Hours:10
3	Carpentry Section 3.1 Types of wood and their applications 3.2 Types of carpentry hardware's and their uses 3.3 Sketching, understanding the specifications, materials, various applications and Methods used in Carpentry shop along with use of tools like saws, planner, chisels, Hammers, mallet, marking gauge, Vice, try square, rule, etc. 3.4 Demonstration of carpentry operations such as marking, sawing, planning, chiseling, Grooving, boring, joining, etc. 3.5 Preparation of wooden joints 3.6 Safety precautions & Personal Protective Equipment Course Outcome: CO1,CO2,CO3,CO4, CO5 Teaching Hours:10
4	 Welding Section 4.1 Types, sketching, understanding the specifications, materials and applications of arc & Gas welding accessories and consumables 4.2 Demonstration of metal joining operations like arc welding, soldering and brazing, effect of Current and speed. Also demonstrate various welding positions. 4.3 Demonstrate gas cutting operation. 4.4 Preparation of metal joints. 4.5 Safety precautions & Personal Protective Equipments. Course Outcome: CO1,CO2,CO3,CO4, CO5 Teaching Hours:10

	Fitting Section						
	5.1 Sketching, understanding the specifications, materials, various applications and methods used						
	in fitting, marking, measuring, work holding, cutting & finishing tools.						
5	5.2 Demonstration of various fitting operations such as chipping, filing, scraping, grinding, Sawing,						
3	marking, Drilling ,tapping, etc.						
	5.3 Preparation of male, female joint.						
	5.4 Safety precautions & Personal Protective Equipments						
	Course Outcome: CO1 CO2 CO3 CO4 CO5 Teaching Hours: 12						
	Plumbing Section						
	6.1 Types, specification, material, applications and demonstration of pipe fitting tools.						
	6.2 Demonstration of pipe fitting operations such as marking, cutting, bending, threading,						
	assembling, Dismantling etc.						
6	6.3 Types and application of various spanners such as flat, fix, ring, box, adjustable etc.						
	6.4 Preparation of pipe fitting jobs.						
	6.5 Concept and conversions of SWG and other gauges in use. Use of wire gauge.						
	0.0 Salety precautions & Personal Protective Equipments						
	Course Outcome: CO1,CO2,CO3,CO4, CO5 Teaching Hours: 06						
	Lathe and CNC Operations						
	7.1 Working principle of lathe along with sketch. Maintenance procedure of Lathe Machine.						
	7.2 Demonstration of Lathe machine operation like plain turning, taper turning, threading,						
7	chamfering, etc.						
	7.3 Simple job demonstration for a group on CNC Mill/lathe Machine.						
	Course Outcome:CO5 Teaching Hours: 06						

List of experiments:

Sr. No.	Unit No	СО	List of Experiments	Hours
		CO1	Causes of accidents, general safety rules and work procedure	
1			in workshop, Safety signs and symbols, First Aid.	06
1	1		Perform mock drill session in group of minimum 10 students	
			for Extinguishing fire.	
		CO1,CO2,CO	Prepare job involving operations like bending, setting down,	10
2	2	3,CO4, CO5	bulging, upsetting etc; e.g. Pegs (Square/round), Hook,	
			Hammer tongue, Agro equipment etc. (Individually)	
3	3	CO1,CO2,CO	Prepare two wooden joints as per given drawings. (10
5		3,CO4, CO5	Individually)	
4	4	CO1,CO2,CO	Prepare lap joint/butt joint using either arc / gas welding as	10
-		3,CO4, CO5	per given drawing.(Individually)	
5	5 CO1,CO2,C	CO1,CO2,CO	Prepare one Male- Female type fitting job as per given	12
5	5	3,CO4, CO5	drawing. (Individually)	
6	6	CO1,CO2,CO	Prepare two pipe joints as per given drawings.	06
0	0	3,CO4, CO5	(Individually)	
7	7	CO5	Demonstration of Lathe machine & CNC machine	06
/	/		operations	
			Total	60

Page **3**

References/ Books:

Sr.	Title	ISBN	
No.		Year Of publication	
1	Workshop Technology - 1	Hazra and Chaudhary	978-8185-0991-49
		Media promoters & Publisher private	
		limited.	
2	Workshop Technology - 1	W.A.J. Chapmam	978-0713-1326-94
		Taylor & Francis.	
3	Workshop Practice Manual	Hegde.R .K, Sapna Book House,	979-8128-0058-30
	for Engineering Diploma &	2012,	
	ITI Students		
4	Workshop Familiarization	E. Wilkinson	978-0273-3167-56
		Pitman engineering craft series, 1972	
5	Mechanical workshop	K.C.John, PHI, 2010	978-812-03416-61
	practice.		
6	Workshop practice manual	K. Venkata Reddy, B. S. Publications,	978-8178-0030-78
		6 th Ed, 2015	

E-References:

- 1. http://www.asnu.com.nu b.c.
- 2. http://wwwabmtools.com/downioads/Woodworking%20Carpentry%20Tools.pdf d.
- 3. http://www.weldingtechnology.org e.http://www.newagepublishers.com
- 4. http://www.youtube.com/watch?v=TeBX6cKKHWY g
- 5. http://www.youtube.com/watch?v=QHF0sNHnttw&feature=related h
- 6. http://www.youtube.com/watch?v=K v l zo9CAxt4&feature=relmfu i.
- 7. http://sourcing.indiamart.com/engineerig/articles/materials-used-hand-tools/

CO Vs PO and CO Vs PSO Mapping (Mechanical Engineering)

					2210101018	Concession of the local division of the loca			
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	1	1	2	1	2	2	1	2	2
CO2	2	2	2	2	2	2	2	2	2
CO3	2	2	2	2	2	2	2	2	2
CO4	3	3	3	3	3	3	3	2	2
CO5	2	2	2	2	2	2	2	2	2

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	1	1	2	1	2	2	1	2	2	
CO2	2	2	2	2	2	2	2	2	2	
CO3	2	2	2	2	2	2	2	2	2	
CO4	3	3	3	3	3	3	3	2	2	
CO5	2	2	2	2	2	2	2	2	2	

CO Vs PO and CO Vs PSO Mapping (Civil Engineering)

CO Vs PO and CO Vs PSO Mapping (Instrumentation)

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	1	1	2	1	2	2	1	2	1
CO2	2	2	2	2	2	2	2	2	1
CO3	2	2	2	2	2	2	2	2	1
CO4	3	3	3	3	3	3	3	2	1
CO5	2	2	2	2	_2	_2	2	2	1

Industry Consultation Committee:

Sr. No	Name	Designation	Institute/Organisation
1	Shri. S. V. Joshi	Lecturer in Mechanical Engineering & I/c Workshop Superintendent	Govt. Polytechnic, Mumbai
2	Shri. N. M. Ambadekar	Workshop Superintendent,	Govt. Polytechnic, Thane
3	Shri. D. B. Jadhav	Senior Manager	Auto. Division, Mahindra and Mahindra Ltd., Kandivali

Coordinator,

Curriculum Development,

Workshop Superintendent Department of Workshop

Department of Mechanical Engineering

I/C, Curriculum Development Cell

Principal

Programme : Diploma in Mechanical Engineering (Sandwich Pattern)										
Course Code:ME19204				Course T	itle: Safe	ety Pract	ices			
Compulsory / Optional: Compulsory										
Teaching Scheme and Credits			l Credits		Examination Scheme					
L	Р	TU	Total	TH (2 Hrs 30min)	TS1 (1 Hr)	TS2 (1Hr)	PR	OR	TW	Total
1	2	-	3	-	-	-	-	25	25	50

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination Note: For Minimum passing marks under various heads, refer, examination rule AR26.

Rationale:

Safety of human life and assets are of top priority in industrial and social world. Accidents not only severely affect the victims but also to society and nation. Mechanical Engineering Technician leads the work team as First Line Supervisor. Hence along with other performances, he/she is also responsible for safe working practices and prevention of accidents at work place. He/She has to motivate the subordinates for safe working practices. The supervisor must have the basic understanding of safety aspects at workplaces and in general life also.

As safety is related to affective domain of learning, hence the course is required to be introduced at early stage of professional education.

Course Outcomes: Student should be able to

CO1	Describe effects of accidents on individual, industry and society, principles of accident
	prevention and home and public safety issues, basics of industrial safety, occupational health
	hazards and first aid techniques.
~~	Describe safety practices at laboratories, workshop, workplaces related with handling of hand
CO2	tools, power tools, chemicals, machine guarding and identify safe/ unsafe working conditions
CO3	Select appropriate personal protective equipment under given situation
005	
CO4	Choose and Use appropriate fire extinguishers and follow fire prevention practices
COT	
CO5	Identify electric hazards for prevention of accidents.
005	v 1

Course Content Details:

Unit No	Topics / Sub-topics
	Importance of Safety and Accident Prevention
	1.1 Accidents, Causes of Accident, Cost of accident,
	1.2 Effects of accident on individual, industry, society and nation,
1	1.3 Causes of Accidents Unsafe Conditions, Unsafe Acts , Human factors, Principles of accident prevention
	1.4 Safety at Home: Safe use of Gas Cylinder & stove, Slippery & wet surfaces, Safe use of Lifts/ elevators,

	1.5 Preparedness at home: Earthquake response, First Aid Box, List of Contacts
	1.6 Safe driving, safe use of public transport- Buses & Trains,
	1.7 Unsafe behavior of Crowd & its management
	Course Outcome- CO1 Teaching Hours – 03
	Safety in Laboratories, Workshop & Workplaces
2	 2.1 Safe storage and Use of hazardous Chemicals 2.2 Safe use of Hand tools and Power tools such as electrically powered I tools, pneumatic tools, hydraulic tools, grinding tools, 2.3 Safe Lifting Practices 2.4 Machine guarding- Need of machine guarding, Types of machine guards, Legal requirements 2.5 Safe working conditions: Ventilation, Illumination, Temperature, vibrations, Safe use of Computers, postures and ergonomics etc.
1	Course Outcome- CO2 Teaching Hours – 03
	Personal Protective Equipment
3	 3.1 Personal Protective equipment for – Hand protection, Foot protection, Head Protection, Eye Protection, Face Protection Skin, Body Protection, Protection against fall & working at heights, Hearing/ Noise Protection, Respiratory Protection
	3.2 Selection of PPE
	Course Outcome- CO3 Teaching Hours – 02
4	Fire Prevention 4.1 Chemistry of Fire, Fire Triangle, Classification of Fires, Stages of Fire, 4.2 Causes of General and Industrial Fires, Prevention of fires at home, buildings and industries 4.3 Fire detection systems, fire extinguishers& their use, Automatic fire extinguishing system, Personal rescue during fire Course Outcome- CO4 Teaching Hours – 03
	Introduction to Electrical Safety
	5.1 Electrical Injuries, Safe limit of current and voltage, Effects of electric current on human
	body,
5	5.2 Static electricity hazards & prevention 5.3 Electrical Hazards at Home and their prevention Safe use of Electric home appliances
	5.4 Electrical Hazards in Offices and Industries
	5.6 Safety Devices
	Course Outcome- CO5 Teaching Hours – 02 Introduction of Industrial Safety
	 6.1 Classification of Industrial accidents in industries, accident reporting, Record keeping 6.2 Creating Safety awareness, Motivation for safe practices, 6.3 Industrial safety hazards. Occupational Health Hazards : Heat Stress, sound pollution
6	Vibrations, Temperature etc 6.4 First Aid
I	Course Outcome- CO1 Teaching Hours – 02

Sr. No.	CO	Unit No	List of Experiments			
1	CO1	1	Assignment on Public & Home Safety	04		
2	CO2	2	Demonstration of Safe practices while using Hand and power tools Teacher to demonstrate the safe practices. Student to observe and rehearse the practices. Prepare write up on safe practices while using these tools.	02		
3	CO3	3	Personal safety equipment Students to collect information regarding various PPE available in market, their specifications and their suitability of application and prepare presentation	04		
4	CO4	4	Demonstration of use of Fire extinguisher	04		
5	CO5	5	Assignment on Electrical safety	04		
6	CO1	6	Demonstration of First Aid Techniques	04		
7	CO1 to CO5	All	Visit to Safety exhibition/ safety training institute or Expert lecture by Safety Professional or disaster management expert	04		
8	CO1 to CO5	1 to 6	Mini Project Students are required to form a group of four. Prepare distribution material on safety Awareness. Arrange one hour safety orientation program for a group of 20 persons like peers, residents of housing societies, school children etc. Prepare a report OR Case study on Industrial Accident/ Public Place Accident Using information resources, student has to find out case of General/industrial accident, its effects, causes, what measures could have prevented the accident. Prepare a report on it (Group Activity in 4 students) OR Survey of Institute Laboratories/ Workshop/ Institute building for various hazards	04		
			Total	30		

List of Assignments/ Practical: All assignments/practical are compulsory

References/ Books:

Sr. No.	Book Title	Author, Publication, Edition, Year of Publication	ISBN
1	Industrial safety	K.T. Kulkarni, Pune Vidyarthi Grih Prakashan, Pune, 4 th Edition, 2012	-
2	Electrical Safety, Fire Safety Engineering and Safety Management	S. Rao, R. K. Jain, H.L.Saluja, Khnanna Publication, 2 nd Edition, 1997	978-8174-0930-66
3	Basics of Occupational Safety and Health	Goetsch D.L., Mac Millan, 3 rd Edition, 2018	978-0133-4960-79
4	Industrial safety	Blake R.P. ,Prentice Hall,3 rd Edition, 2000	978-0134-6313-32
E-References:

- 1. www.nsc.org.in
- 2. https://ndma.gov.in
- 3. https://www.gkskill.com
- 4. www.libertygfg.com
- 5. https://mospi.nic.in
- 6. https://safetyskills.com
- 7. https://dgfscdhg.gov.in
- 8. www.ehs.princeton.edu

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	1	1	1	-	3	2	3	1	2
CO2	1	3	2	1	3	2	3	1	2
CO3	1	3	2	1	3	2	3	1	2
CO4	1	2	2	1	3	2	3	1	2
CO5	1	2	2	Î	3	2	3	1	2

CO Vs PO and CO Vs PSO Mapping

Industry Consultation Committee:

Sr. No	Name	Designation	Institute/Organisation		
1	Mr. Ruhil Alwi	Sr. Executive	Coffee Day Beverages, Mumbai		
2	Mr. A.S. Sangwikar	Lecturer in Mechanical Govt. Polytechnic, Engineering			
3	Mr. U.A. Agnihotri	Lecturer in Mechanical Engineering	Govt. Polytechnic, Mumbai		
4	Mr. E.C. Dhembre	Lecturer in Mechanical Engineering	Govt. Polytechnic, Mumbai		

Coordinator, Curriculum Development, Department of Mechanical Engineering Head of Department Department of Mechanical Engineering

I/C, Curriculum Development Cell

Principal

GOVERNMENT POLYTECHNIC MUMBAI

(Academically Autonomous Institute of Government of Maharashtra)

Department of Mechanical Engineering P19 Curriculum Second Semester

GOVERNMENT POLYTECHNIC MUMBAI

(Academically Autonomous Institute, Government of Maharashtra)

Teaching and Examination Scheme (P19)

With effect from AY 2019-20

Programme: Diploma in Mechanical Engineering (Sandwich Pattern)

G	Course Title		Teaching Hours/Con Hours			tact		Examination Scheme (Marks)						
Course						Credits	Theory							
Coue		L P TU Total TH TS1 TS2 PR OR	OR	TW	Total									
SC19102	ENGINEERING PHYSICS	3	2	141	65	5	60	20	20	25*		25	150	
SC19110	ENGINEERING MATHEMATICS	4	3	1	4	4	60	20	20				100	
ME10200	FUNDAMENTALS OF ELECTRICAL			14	18									
ME19209	& ELECTRONICS ENGINEERING		4	- 2 <u>02</u>	7	12	60	20	20	25		25	150	
AM19201	ENGINEERING MECHANICS	3	2		5	5	60	20	20	25		25	150	
ME19202	ENGINEERING DRAWING-II	3	3		6	6	60	20	20			50	150	
ME19401	C PROGRAMMING (Spoken Tutorial)		3#	2	3	3								
	Total	16	14		30	30	300	100	100	75		125	700	
	Student Centered Activity (SCA)				05									
	Total Contact Hours				35									

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment)

* Indicates assessment by External Examiner else internal practical skill test, #indicates self, on- line learning Mode, @ indicates on line examination Note: Duration of Examination--TS1&TS2 -1 hour, TH- 2 hours 30 min, PR/OR – 3 hours per batch, SCA- Library -1 hour, Sports- 2hours, Creative Activity-2 hours

indicates Self, on- line learning Mode through MOOCs/Spoken Tutorials /NPTEL/SWAYAM/FOSSEE etc.

Department Coordinator, Curriculum Development, Dept. of Mechanical Engineering Head of Department Dept. of Mechanical Engineering In-Charge Curriculum Development Cell Principal

Term / Semester -II

Program	Programme : Diploma in CE/ ME (Sandwich pattern)										
Course Code: SC19102 Course Title: Engineering Physics											
Compul	Compulsory / Optional: Compulsory										
Teachi	ng Sche	eme and	l Credits			Examin	ation Scl	neme			
L	Р	TU	Total	TH (2Hrs.30 minutes)	TS1 (1 Hr.)	TS2 (1Hr.)	PR	OR	TW	Total	
3	2		5	60	20	20	25*		25	150	

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination

Note: For Minimum passing marks under various heads, refer, examination rule AR26. Two practical skill tests are to be conducted. First skill test at midterm and second skill test at the end of the term

Rationale:

The subject is included under the category of science. The special feature of the subject is to develop the laboratory skill using principles of scientific phenomenon. This course will serve to satisfy the need of the technical students for their development in technical field. The course is designed by selecting the topics which will develop intellectual skills of the students and will guide students to solve broad based engineering problems. Ultimately the focus of the course is to develop psychomotor skills in the Students.

Course Outcomes: Student should be able to

	The second
CO1	State the different physical quantities identify the proper unit of it and to estimate in the
	measurement of physical quantities.
CO2	Apply laws of motion in various engineering applications
CO3	Identify the properties of solid, liquid such as elasticity, liquid friction, viscosity and surface tension
CO4	Analyze types of waves and acoustics of good building.
CO5	Create awareness about the properties and application of light, LASER in engineering field.

1267010 10031

Course Content Details:

Unit No	Topics / Sub-topics
1	 Units and Measurements 1.1 Fundamental Physical quantities, examples. 1.2 Derived physical quantities, examples. 1.3 Definition and requirements of unit 1.4 System of units, C. G. S., M. K. S. and S. I. units. 1.5 Rules to write the unit and conventions of units and Significant figures, rules to write significant figures. 1.6 Error – Definition, types of errors and estimation of errors 1.7 Numerical
2	 Motions 2.1 Linear motion –Definition – distance, displacement, velocity, equation of motions, acceleration due to gravity and under gravity, numerical 2.2 Periodic motions : a)Oscillatory motion, b)Vibratory motion, c) S.H.M d) Circular motion. (only definition and examples), 2.3 Angular motion: a) Definition: Time period, frequency, amplitude, wavelength, and phase. Uniform circular motion, Radius vector, linear velocity, Angular velocity , Angular acceleration,Numerical. b) Relation between linear velocity and angular Velocity (derivation), Radial or centripetal acceleration, Three equations of motion (no derivations) Centripetal and Centrifugal force, examples and applications. 2.4 Kinetics 2.4.1 Definition Kinetics , momentum, impulse, impulsive force 2.4.2 Newton's laws of motion with equation 2.4.3 Application of Newton's laws of motion 2.4.4 Definition and unit - work power energy 2.4.5 Work energy principle 2.4.6 Numerical.
	Course Outcome: CO2 Teaching Hours :10 hrs. Marks: 10 (R-2, U-4, A-4) General Properties of Matter 3.1 Elasticity:
3	 3.1.1 Deforming force, restoring force, Elastic, plastic and rigid substances, and their examples. 3.1.2 Definition of elasticity, stress, strain and its types. 3.1.3 Hooke's Law and elastic limit. 3.1.4 Stress - Strain curve, yield point, breaking point. 3.1.5 Young's Modulus, Bulk modulus and Modulus of rigidity

 ${\rm Page}2$

	
	Definition and relation among them.
	3.1.6 Factor of safety.
	3.1./ Applications of elasticity
	3.1.8 Numerical.
	3.2 Liquid Friction
	3.2.1 Friction liquid, pressure
	3.2.2 pressure height relation
	3.3.3 Pascal's law, Archimedes' Principle and application of it.
	3.3 Viscosity
	3.3.1 Concept and Definition of viscosity, velocity gradient.
	3.3.2 Newton's law of viscosity, Co-efficient of viscosity, unit of
	viscosity
	3.3.3 Stokes' law, terminal velocity, derivation of Stokes' formula.
	3.3.4 Streamline flow, turbulent flow, critical velocity, examples.
	3.3.5 Reynolds' number and its significance.
	3.3.6 Applications of viscosity.
	3.3.7 Numerical.
	3.4 Surface Tension :
	3.4.1 Concept of surface tension.
	3.4.2 Adhesive and cohesive forces, examples.
	3.4.3 Laplace's Molecular theory of surface tension
	3.4.4 Angle of contact, its significance.
	3.4.5 Expression for surface tension by capillary rise method.
	3.4.6 Effect of impurity and temperature.
	3.4.7 Applications of surface tension.
	3.4.8 Numerical.
	The state of the s
	Course Outcome: CO3 Teaching Hours: 12 hrs. Marks: 18 (R-4, U-6, A-8)
	Sound and Acoustic
	4.1 Sound Waves :
	4.1.1 Wave motion, types of waves – progressive, longitudinal and transverse waves.
	4.1.2 Characteristics of longitudinal and transverse waves and comparison.
	4.1.3 Free or natural vibrations and forced vibrations, resonance – definition and examples.
	4.1.4 Determination of velocity of sound by resonance method.
	4.1.5 Numerical.
4	4.2 Acoustics :
	4.2.1 Definition of echo, reverberation, reverberation time and acoustic
	4.2.2 Sabine's formula for reverberation time (no derivation)
	4.2.3 Factors affecting acoustics of sound.
	4.2.4 Acoustical planning of building
	4.2.5 Numerical.
	Course Outcome: CO4 Teaching Hours: 8 hrs. Marks: 10 (R-2, U-4, A-4)

	Optics and Optical Fiber							
	5.1 Optics :							
	5.1.1 Revision of reflection and refraction of light.							
	5.1.2 Laws of refraction, Snell's law.							
	5.1.3 Determination of refractive index.							
	5.1.4 Dispersion, dispersive power, Prism formula (derivation)							
_	5.1.5 Critical angle, Total internal reflection. Examples and applications.							
5	5.1.6 Numerical.							
	5.2 Optical Fiber :							
	5.2.1 Principle of propagation of light through optical fiber.							
	5.2.2 Structure of optical fiber.							
	5.2.3 Applications.							
	5.2.4 Difference between optical fiber cable and electric cable wire							
	Course Outcome: CO5 Teaching Hours: 4 hrs. Marks: 10 (R-2, U-4, A-4)							
	LASER							
	6.1 LASER introduction,							
	6.2 Properties of laser,							
	6.3 Spontaneous and stimulated emission,							
0	6.4 Population inversion, Optical pumping,							
	6.5 Applications of LASER.							
	6 1/1 24 21 (A 2) 2							
	Course Outcome: CO5 Teaching Hours : 3 hrs. Marks: 6 (R-2, U-2, A-2)							

Suggested Specifications Table (Theory):

Unit	6	Distribution of Theory Marks						
No	Topic Title YOWLEDG	R Level	U Level	A Level	Total Marks			
1	Units and Measurements	2	2	2	6			
2	Motion	2	4	4	10			
3	General properties of matter	4	6	8	18			
4	Sound and Acoustic	2	4	4	10			
5	Optics and Optical fiber	2	4	4	10			
6	LASER	2	2	2	6			
	Total	14	22	24	60			

1960

List of experiments:

Sr. No.	Unit No	co	List of Experiments			
1	1	CO 1	To know your Physics laboratory and use of scientific calculator.	2		
2	1	CO 1	To measure the dimensions of given objects and to determine their Volume using Vernier caliper.	2		
3	2	CO 2	To determine Acceleration due to gravity by simple pendulum	2		
4	3	CO 3	To determine coefficient of viscosity of liquid by Stokes' method	2		
3	3	CO 3	To determine the surface tension of liquid using capillary rise method.	2		
6	4	CO 4	To determine velocity of sound by resonance method.	2		
7	5	CO 5	To determine refractive index by using pin method	2		
8	1	CO 1	To measure the dimensions of given objects and to determine their Volume using micrometer screw gauge.	2		
9	2	CO 2	To determine stiffness constant by using helical spring	2		
10	3	CO 3	To determine the Young's modulus of elasticity of wire using Young's apparatus	2		
11	3	CO 3	To verify the relation between radius of capillary tube and height of liquid in a capillary tube.	2		
12	4	CO 4	To determine velocity of sound by using sonometer.	2		
13	6	CO 5	Experiment on LASER	2		
14	5	CO 5	To demonstrate spectrometer	2		
15	ALL	CO 1	Showing Video on different applications related to units,	2		
			Total	30		

Note: Experiments No. 1 to 10 are compulsory and should map all units and Cos. Remaining 5 experiments are to be performing on the importance of topic.

References/ Books:

Sr.	Title	Author, Publisher, Edition and	ISBN
No.		Year Of publication	
1	Applied Physics	Manikpure & Deshpande ,S.Chand & Company	10:8121919541 13:9788121919548
2	Applied Physics	B.G.Bhandarkar, Vrinda Publication	0071779795
3	Optics & Optical Fibers	Brijlal Subhramanyan	978-3-662-52764-1
4	Engineering Physics	Gaur and S.L.Gupta S.Chand & Company	0-07-058502
5	Physics	Resnick and Halliday Tata McGraw Hills	978-0-07-1755487- 3
6	Physics part I & II	H.C .Varma	9788177091878
7	Properties of Matter	D.S .Mathur	13: 978- 8121908153

E-References:

- 1. www. Physics.org
- 4.www.ferrofphysics.com
- 2. www.physicsclassroom.com
- 5.http;//hperphysics.phastr.gsu.edu/hbase/hph.htm
- 3. <u>www.youtube/physics</u> 6.www.sciencejoywagon.com/physicszone
- <u>https://www.vedantu.com/ncert-solutions/ncert-solutions-class-12-physics</u>
- 8. MYCBSEGUIDE

9. https://ndl.jitkgp.ac.jn/

CO Vs PO and CO Vs PSO Mapping (CIVIL ENGINEERING)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	1	1	2	1	1	1	2	1	
CO2	3		1		1	1	1	2	1	1
CO3	3	1	1		1	1	1	1	1	
CO4	3	1	1	2	1	1	1	2	1	1
CO5	3	1	1	1			1	1		

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	3	1	1	2	1	1	1	2	
CO2	3	1	1		1	1	1	1	1
CO3	3	1	1		1	1	1	2	1
CO4	3		1	2	1	1	1	2	
CO5	3	1	1	1			1	1	

CO Vs PO and CO Vs PSO Mapping (MECHANICAL ENGINEERING)

Industry Consultation Committee:

Sr. No	Name	Designation	Institute/organization		
1	Mr. Rajesh Masane	Sr. Engineer	L and T Mumbai		
2	Mrs B.J. Choudhary	Lecturer in Physics	Govt. Polytechnic Thane		
3	Mrs S.A. Thorat	Lecturer in Physics	Govt. Polytechnic Mumbai		
4	Dr. D.S. Nikam	Lecturer in Physics	Govt. Polytechnic Mumbai		

Coordinator, Curriculum Development, Department of Sci. & Humanities Head of Departments Department of Sci. & Humanities

I/C, Curriculum Development Cell

Principal

Program	Programme : Diploma in CE/ME/CO/IF/EC/EE/IS(Sandwich Pattern)											
Course (Code: S	C1911()	Course T	Course Title: ENGINEERING MATHEMATICS							
Comput	Compulsory / Optional: Compulsory											
Teachir	ng Sche	me and	Credits	Examination Scheme								
L	Р	TU	Total	TH (2 Hrs 30 Min.)	TH (2 HrsTS1TS2 (1 Hr)PRORTWTotal30(1 Hr)(1Hr)PRORTWTotal							
4			4	60	20	20				100		

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2-Term Tests, PR- Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination Note: For Minimum passing marks under various heads, refer, examination rule AR26. Two practical skill tests are to be conducted. First skill test at midterm and second skill test at the end of the term

Rationale:

.

This subject is kept under the branch of sciences. This subject intends to teach student basic facts ,concepts, principles, and procedure of mathematics as a tool to analyze engineering problems and as such lays down foundation for understanding the engineering and core technology subject.

Course Outcomes: Student should be able to

CO1	Define the basic principles of function, limits, derivatives, complex number and relations between two variables.
CO2	Apply rules, concept and properties to solve the problems
CO3	Solve the given problems of integration using suitable method.

Course	Content Details:
Unit	Topics / Sub-topics
INO	1. Function
1	1.1 Definition of variable, constant, intervals such as open, closed, semi-open etc 1.2 Definition of function, value of function and types of functions and
	simple examples Course Outcome: CO1 Teaching Hours : 10 hrs Marks: 10 (R- 4, U-4, A-2)
2	 2. Limits 2.1 Definition of neighbourhood, concept and definiton of limit 2.2 Limits of Algebraic function 2.3 Limits of Trigonometric Functions with simple examples Course Outcome: CO1 Teaching Hours : 10 hrs Marks: 10 (R-2, U-4, A-4)
3	 3. Derivatives & Application of derivative Definition of the derivative. Derivatives of standard function.(No proof by first principle) Differentiation of sum, difference, product and quotient of two or more functions Differentiation of composite function with simple example. Second order derivative. Geometrical Meaning of Derivative Tangents & Normals to the curve, Maxima & minima of the function Radius of curvature Course Outcome: CO2 Teaching Hours :10 hrs Marks:10 (R-4, U-4, A-2)
4	 4. Integration & Application of integration 1. Definition of integration as antiderivative, Integration of standard function 2. Rules of integration(Integration of sum, difference, scalar multiplication) without proof Integration by substitution Integration of composite function 4.4 Integration of definite integral 4.6 Properties of definite integral with simple problems 4.7 Area under the curve 4.8 Area bounded by two curves
	Course Outcome: CO3 Teaching Hours :10 hrs Marks:10 (R-4, U-4, A-2)
5	 5. Complex Number:- 5.1 Definition of complex number Cartesian ,Polar ,Exponential form of complex number 5.2 Algebra of complex number :-Equality , addition ,Substraction ,Multiplication & Division with simple examples
	Course Outcome: CO2 Teaching Hours :10hrs Marks:10 (R-2, U-4, A-4)
6	 6.1 Solution of Algebraic equations using – i) Bisectional method ii) Regular – Falsi method , iii) Newton- Raphson method 6.2 Solution of simultaneous equation (i) Gauss elimination method (ii) Jacobi's method (iii) Gauss-Seidal method
	Course Outcome: CO2 Teaching Hours : 10 hrs Marks: 10 (R-2, U-4, A-4)

Suggested Specifications Table (Theory):

		Distribution of Theory Marks						
Unit No	Topic Title	R Level	U Level	A Level	Total Marks			
1	Function	04	04	02	10			
2	Limits	02	04	04	10			
3	Derivatives & Application of Derivatives	04	04	02	10			
4	Integration & Application of Integration	04	04	02	10			
5	Complex Number	02	04	04	10			
6	Numerical Analysis	02	04	04	10			
	Total	18	24	18	60			

References/ Books:

Sr. No.	Title	Author, Publisher, Edition and Year Of publication	ISBN		
1	Mathematics for Polytechnic Students	S.P.Deshpande, Pune Vidyavardhini Graha Prakashan	-		
2	Mathematics for Polytechnic Students (Volume I)	H.K.Dass, S.Chand Prakashan	9788121935241		
3	Companions to Basic Maths	G.V.Kumbhojkar, Phadke Prakashan	10-B07951HJDQ 13-B07951HJDQ		
4	Applied Mathematics	N.Raghvendra Bhatt late, Tata McGraw Hill Publication Shri R Mohan Singh	9789339219567, 9339219562		

E-References:

- 1. www.math-magic.com
- 2. <u>www.Scilab.org/-SCI</u> Lab
- 3. www.mathworks.com/Products/Matlab/-MATLAB
- 4. <u>www.wolfram.com/mathematica/-Mathematica</u>
- 5. https://www.khanaacademy.org/math?gclid=CNqHuabCys4CFdoJaAoddHoPig
- **6.** www.dplot.com/-Dplot
- 7. www.allmathcad.com/-Math CAD
- 8. <u>www.easycalculation.com</u>
- 9. <u>https://www.vedantu.com/ncert-solutions/ncert-solutions-class-12-maths</u>
- **10.** MYCBSEGUIDE

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3			1			1	1		1
CO2	3			1			1	1		1
CO3	3			1			1	1		1

CO Vs PO and CO Vs PSO Mapping (CIVIL ENGINEERING)

CO Vs PO and CO Vs PSO Mapping (MECHANICAL ENGINEERING)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	3			1			1	1	
CO2	3			1			1	1	
CO3	3			1	NOIN	1200	1	1	
				100.00	(Cam)	1.18.7	1000	•	

CO Vs PO and CO Vs PSO Mapping (COMPUTER ENGINEERING)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3		õ/	T	AID	N.Y.	1	1	1	
CO2	3		° 1		5	1	L h	1	1	
CO3	3		0	1	N.S.	14	1	1	1	

CO Vs PO and CO Vs PSO Mapping (INFORMATION TECHNOLOGY)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3			1	S W LE		1	1		1
CO2	3			1			1	1		1
CO3	3			1			1	1		1

CO Vs PO and CO Vs PSO Mapping (ELCTRONICS ENGINEERING)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3			1			1		1	1
CO2	3			1			1		1	1
CO3	3			1			1		1	1

CO Vs PO and CO Vs PSO Mapping (ELECTRICAL ENGINEERING)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3			1			1		1	
CO2	3			1			1		1	
CO3	3			1			1		1	

CO Vs PO and CO Vs PSO Mapping (INSTRUMENTATION ENGINEERING)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	3			1			1	1	1
CO2	3			1			1	1	1
CO3	3			1			1	1	1

Industry Consultation Committee:

No	Name	Designation	Institute/Organisation
1	Neelamkumar R. Sawant	State Head Technical Services for (Maharashtra and Goa)	JSW Cement ltd. Mumbai Head Office
2	Mrs. Deepawali S. kaware	Lecturer in Mathematics	Government polytechnic Vikaramgad
3	Mr. A.S.Patil	Lecturer in Mathematics	Government polytechnic Mumbai
4	Mr.V.S.Patil	Lecturer in Mathematics	Government polytechnic Mumbai

POLYTECHN

Coordinator, Curriculum Development, Department of Sci. & Humanities Head of Departments Department of Science & Humanities

I/C, Curriculum Development Cell

Principal

Programme : Diploma in Mechanical Engineering (Sandwich Pattern)										
Course Code: ME19209			Course Title: Fundamentals of Electrical and Electronics Engineering							
Compul	Compulsory / Optional: Compulsory									
Teachin	g Schei	me and	Credits	Examination Scheme						
L	Р	TU	Total	TH (2 Hrs 30min)	TS1 (1 Hr)	TS2 (1Hr)	PR	OR	TW	Total
3	4		7	60	20	20	25	-	25	150

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination Note: For Minimum passing marks under various heads, refer, examination rule AR26.

Rationale:

This is the subject where the principles of electrical energy are studied. Knowledge of basics of electrical is essential to apply on all type of electrical machines, instruments, devices and equipment's. The basic aim of this course is that, the student must learn basic concepts, rules and laws of electric and magnetic circuits and practical's. The knowledge of this course will be useful for other higher-level subject

CO1	Apply basic concepts of electrical engineering
CO2	Analyze performance of single-phase transformer
CO3	Select electric machine for specific application.
CO4	Describe the fundamentals of Diode and their applications
CO5	Illustrate the basic fundamentals, biasing techniques and applications of transistor
CO6	List types of power devices and their applications

Course Outcomes: Student should be able to

Course Content Details:

Unit No	Topics / Sub-topics									
	Basic	Concept								
	1.1	Concept of Electric current, Electric Potential, Potential difference, E.M.F.								
		Difference between E.M.F and Potential Difference								
	1.2	Resistance, factors affecting Resistance, Effect of Temperature on Resistance.								
		Temperature Co-efficient of Resistance								
	1.3	Classification of Electric Current, compare DC with AC								
1	1.4	Effects of Electric Current.								
	1.5	Concept of Electrical Work, Power & Electrical energy (Simple Problems)								
	1.6	Equation for equivalent resistance connected in i) series ii) parallel								
	1.7	Concept of current, voltage, phasor relationship of current and voltage,								
		waveform of pure resistance, pure inductance and pure capacitance								
	1.8	Concept of Power and power factor								

Page]

	1.9	Power triangle: A	Active power, Reactive powe	er, Apparent power							
	1.10	Magnetic circuit,	Magnetic flux, properties of	of magnetic lines of force, magnetic							
	1 11	Faraday's Laws of	of Electromagnetic Induction	n							
	1.11	Direction of indu	ced E.M.F i) Fleming Right I	Hand Rule ii) Lenz's Law							
	1.13	Types of Induced	E.M.F. Self & mutual Induct	tion (no numerical)							
	Course	e Outcome: CO1	Teaching Hours:12	Marks: 12 (R-2 , U-6,A-4)							
	Trans	sformer									
	2.1	Working Principal of transformer.									
	2.2	Construction of Single phase Transformer and types of transformer depending									
		on construction a	and transformation ratio.								
	2.3	EMF equation(No	o derivation):voltage ratio, '	Turns ratio Transformation ratio							
2	2.4	Transformer loss	ses, Efficiency and regulation	n of transformer							
2	2.5	specification & a	pplication of transformer								
	2.6	.6 Three phase transformer: types of three phase transformer depending on connection									
	2.7	Comparison between single phase and three phase transformer									
	2.8	Construction and	working of Welding transf	ormer							
	~		and a well and	G							
	Course	e Outcome: CO2	Teaching Hours: 8	Marks: 7(R-2, U-3, A-2)							
	3.1	Working principle									
	3.2	3.2 3ph Squirrel cage induction motor – construction, application									
	3.3	.3 Slip Ring Induction motor – construction, application									
	3.4	3.4 Synchronous speed, % slip [simple problems]									
	3.5	3.5 Starting of 3 ph induction motor									
		i) DOL ii) Star De	lta iii) Reduced voltage iv)	Rotor resistance starter							
3	3.6	Torque – Slip cha	aracteristics, Rating and Spe	ecification of three phase induction							
		motor.	OWLEDG								
	3.7	Speed control: Vo	oltage control, Rotor resista	nce control & frequency control							
	3.8	Reversal of Induc	ction Motor								
	3.9	Single phase Indi	action motor : Types only	a shace Induction Motor							
	3.10	Comparison bet	ween three phase and single	e phase induction Motor							
	Course	e Outcome: CO3	Teaching Hours :10	Marks:11(R-2, U-5, A-4)							
	Diode	application	1								
	4.1	PN junction dio	de: Forward and reverse bi	as.							
4	4.Z	Review of Trans	stormer: Step Up, Step down	n. Wayoforms and Working of							
-	4.5 a)	Half wayo roctifio	r (b) Full Waya ractifiar (Co	n, waveloi ilis aliu working of							
	aj i rec	tifier		entre Tappeu) (c) Fun wave bridge							
	100										
	Course	eOutcome:CO4	Teaching Hours:4	Marks:10 (R-2, U-4, A-4)							

	Transistor Fundamentals and applications								
	5.1 Bipolar Junction Transistor: Symbol, Construction and working of PNP and NPN								
	transistors.								
	BJT biasing:								
	Introduction: Need of biasing, DC Operating point and load line, factors contributing								
5	to thermal instability, Effect of temperature (Thermal runway), Stability Factor								
3	5.2 Voltage divider bias								
	Application of Transistor:								
	5.3 Transistor as a Switch.								
	5.4 Single stage Common Emitter (CE) amplifier (circuit diagram and working) and its								
	frequency response.								
	$C_{\text{result}} = 0$								
	Course Outcome:COS Teaching Hours: / Marks:12(R-2, U-6, A-4)								
	rower devices								
	6.1 Construction, symbol, characteristics and application of SCR, TRIAC and DIAC.								
6	6.2 Relay: symbol, contacts, construction, working, applications of general purpose								
	Teray.								
	Course Outcome:CO6 Teaching Hours:4 Marks: 08(R-2, U-6, A-0)								

Suggested Specifications Table (Theory):

Unit No	S CADIVIS	Distribution of Theory Marks					
	Topic Title	R Level	U Level	A Level	Total Marks		
1	Basic Concept	2	6	4	12		
2	Transformer	2	3	2	7		
3	Induction Motor	2	5	4	11		
4	Diode application WOWLEDGC	2	4	4	10		
5	Transistor Fundamentals and applications	2	6	4	12		
6	Power devices	2	6		08		
	Total	12	30	18	60		

List of experiments for Electrical Engineering: Any 10 experiments out of 13

Sr. No.	Unit No	CO	List of Experiments	Hours
1	1	CO1	Use of Multimeter for measurement of AC & DC voltage, resistance, continuity	2
2	2	CO2	Measure the voltage ratio and transformation ratio of transformer	2
3	3	CO3	To measure slip of 3-phase induction motor.	2
4	1	CO1	To measure current, voltage, power and energy in single- phase circuit	2

Sr. No.	Unit No	СО	List of Experiments	Hours
5		CO2		4
-	2		To verify efficiency and regulation of transformer	
6		CO3	To plot speed Torque characteristics of 3- phase induction	2
0	3		motor	
7	1	CO1	Measure voltages and currents in series and parallel resistive	4
/	L		circuit.	
8	1	CO1	To verify effect of temperature on resistance of conductor.	2
		G 0 0		2
0	2	CO2	Prepare a report on types of three phase transformer	2
,			depending on connection.	
		CO3	To use different types of starter to start and run three phase	2
10	3		Induction motor. i) DOL Starter ii) star delta starter iii) Rotor	
			resistance starter	
		CO1		2
11	1		To verify Faraday's First Law of electromagnetic Induction	
			(For Dynamically & Statically Induced EMF)	
12	2	CO2	Demonstration and Study of Welding Transformer	2
12	4		Demonstration and Study of weiding Transformer	
13	3	CO3	To reverse the direction of three phase Induction motor.	2
	•	Total	ST Sector Sector	30

List of experiments for Electronics Engineering:

Sr. No	Unit No	CO	List of Experiments	Hours		
1	4	CO4	To plot the V-I characteristic of semiconductor P-N diode.	4		
2	5	CO5	To construct transistor as switch and Observe input and output waveforms.	4		
3	6	CO6	To plot the V-I characteristic of SCR			
4	4	CO4	To observe the waveform of half wave rectifier.	2		
5	4	CO4	To observe the waveform of full wave Centre tapped rectifier	2		
6	4	CO4	To construct and observe the waveform of full wave bridge rectifier	2		
7	5	CO5	To plot input and output characteristics of BJT in CE mode	4		
8	5	CO5	To draw a frequency response of Single stage Common Emitter amplifier	4		
9	6	CO6	To test the phase control / light dimmer circuit using SCR	4		
			Total	30		

References/ Books:

Sr.	Title	Author, Publisher, Edition and	ISBN
No.		Year Of publication	
	Electrical	B.L. Theraja, A.K. Thereja S.	978-8121-9244-05
1	Technology	Chand and Co. Ltd., 23rd Ed,,	978-8121-9243-75
	(Volume I and II)	1959	
	Basic Electrical Engineering	V. K. Mehta, Rohit Mehta,	978-8121-9087-19
2		S. Chand and Co. Ltd.,	
		Revised Ed. 2006	
	Electronics Principles	Malvino, Albert Paul, David,	978-0070634244
3		McGraw Hill Education, 7th	
		edition ,1 July 2017	
	Principles of Electronics	Mehta V.K., Mehta Rohit,	978-8121-9245-04
4		S. Chand and Company,	
		7 th Ed, 2014	
	Fundamentals of	Bell, David ,Oxford	978-0195-4252-39
5	Electronic Devices and	University Press, 5 th Ed., 2007	
	Circuits		
6	A text book of Applied	Sedha R.S, S.Chand & Co., 3 rd	978-8121-9278-33
6	Electronics	Ed, 2008	

1960

Ð

NOWLED

E-References:

- www.nptel.com
- <u>www.electrical4u.com</u>
- <u>www.khanacademy.org</u>
- <u>https://ndl.iitkgp.ac.in/</u>
- www.electronicshub.org/tutorials/
- www.tutorialspoint.com/
- www.youtube.com

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	3	3		2	2		3	3	3
CO2	3	3		2	2		3	3	3
CO3	3	3		2	2		3	3	3
CO4	3	2	2	-	-	-	2	3	3
CO5	2	2	-	1	-	-	1	3	3
CO6	2	-	2	1	-	-	2	3	3

CO Vs PO and CO Vs PSO Mapping

Industry Consultation Committee:

Sr. No	Name	Designation	Institute/Organisation
1	Mr. Sachin Dhale	Software Engineer	Tech- Mahindra
2	Mr.Prahant Hiremat	Senior Engineer	Reliance Industries, Navi Mumbai
3	Miss A. R. Hagawane	Lecturer in Mechanical Engineering	Govt. Polytechnic Mumbai
4	Miss A.V. Patil	Lecturer in Electrical Engineering	Govt. Polytechnic Mumbai
5	Mrs.Puri Sanyogeeta B.	Lecturer in Electronics Engineering	Govt. Polytechnic Mumbai
		MOWLEDGE	

Coordinator, Curriculum Development, Department of Mechanical Engineering

Head of Department Department of Mechanical Engineering

I/C, Curriculum Development Cell

Principal

Programme : Diploma in Civil Engineering & Mechanical Engineering (Sandwich Pattern)										
Course Code: AM19201 Course Title: Engineering Mechanics										
Compulsory / Optional: Compulsory										
Teachi	Teaching Scheme and Credits Examination Scheme									
L	Р	TU	Total	TH (2Hrs 30min)TS1 (1Hr)TS2 (1Hr)PRORTWTotal						
03	02		05	60	20	20	25		25	150

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination Note: For Minimum passing marks under various heads, refer, examination rule AR 26. Two practical skill test are to be conducted. First skill test at mid term and second skill test at the end of the term

Rationale :

In day to day life we come across different structures, at the time of design of structures, analysis plays an important role. Perfect analysis is possible only when one knows the types and effect of forces acting on the structure. This course provides knowledge about the different types of forces/loads, their effects while acting in different conditions/systems. The course also provides the knowledge about basic concepts of laws of engineering, their application to different engineering problem. The principles of mechanics are fundamental to Mechanical and Civil Engineering and related programs such as Mechatronic Engineering, Naval Architecture, Aerospace, Manufacturing as well as Biomedical engineering. This course is needed as a prerequisite for the courses at higher level such as Mechanics of Structures, Strength of Materials, Design of Structures, Theory of Machines, etc.

Course Outcomes:	Student should be able to
-------------------------	---------------------------

CO1	Apply principles of simple machines.
CO2	Determine unknown forces of various force system.
CO3	Apply the principles of equilibrium to engineering problems.
CO4	Apply the principle of friction in various conditions.
CO5	Calculate centroid and center of gravity for various geometrical figures.
CO6	Apply the principles of dynamics.

Course Content Details:

Page J

Unit No	Topics / Sub-topics
1	Simple Machines: 1.1 Definitions 1.2 Simple machine, compound machine , load , effort , mechanical advantage , velocity ratio , input of a machine ,output of a machine efficiency of a machine , ideal machine,

	ideal effort and ideal load, load lost in friction, effort lost in friction								
	1.3 Analysis: Law of machine, maximum mechanical advantage and maximum efficiency								
	of a machine, reversibility of a machine, condition for reversibility of a machine, self-								
	locking machine, simple numerical problems.								
	1 4 Velocity Ratio for simple machines :								
	Simple ayle and wheel differential ayle and wheel Weston's differential nulley block								
	single purchase grab double purchase grab worm and worm wheel geored pulley block								
	single purchase crab, double purchase crab, worm and worm wheel, geared purcy block,								
	screw jack, calculation of mechanical advantage, efficiency, identification of type such as								
	Reversible or not etc.								
	Course Outcome: CO1 Teaching Hours : 6 nrs Marks: 12 (R- 2, U-4, A-6)								
	Force systems:								
	2.1 Fundamentals and Force systems:								
	Definitions engineering mechanics, statics, Dynamics. Classification of force system								
	according to plane coplanar and non-coplanar, sub classification of coplanar force system-								
	collinear, concurrent, non-concurrent, parallel, Definition of a force, representation of a force								
	by vector and by Bow's notation method. Characteristics of a force, effects of a force,								
	principle of transmissibility.								
	2.2 Resolution of a force and Moment of a force:								
	Definition, Method of resolution, along mutually perpendicular direction and along two								
2	given direction. Definition of moment, classification of moments, sign convention, law of								
	moments, Varignon's theorem of moment and it's use, definition of couple, properties of								
	couple								
	2.3 Composition & resolution of forces :								
	Definition of Resultant force methods of composition of forces Law of parallelogram of								
	forces. Algebraic method for determination of resultant for various force system								
	2.4 Granhical method:								
	Space diagram vector diagram polar diagram and funicular polygon Resultant of								
	songurrent and norallel force system only								
	Course Outcome: CO2 Teaching Hours: 10 hrs Marks: 12 (P. 4. U. 4. 4. 4)								
	Fauilibrium								
	2 1 Equilibrant and Lami's Theorem:								
	Definition of equilibrant relation between regultant and equilibrant equilibrant of								
	Definition of equilibrant, relation between resultant and equilibrant, equilibrant of concurrent								
	and non-concurrent force system. Analytical, free body and free body diagram. Statement								
	and explanation of Lami's theorem and Application.								
3	3.2 Beams: Definition, Types of beams (cantilever, simply supported, overhanging, fixed,								
	continuous), Types of end supports (simple support, hinged, roller), classification of loads,								
	point load, inclined point load, uniformly distributed load. Analytical method to determine								
	reactions of simply supported, cantilever and over hanging beam subjected to point loads and								
	UDL and graphical method to determine reactions for beams subjected to vertical point loads								
	& UDL only								
	Course Outcome: CO3 Teaching Hours:8 hrs Marks: 10 (R- 2, U- 4, A- 4)								
L									

	Friction:							
	4.1 Definition:							
	Friction, Types of friction, limiting frictional force, coefficient of friction, angle of friction,							
	angle of repose, relation between angle of friction, angle of repose and coefficient of friction.							
	Cone of friction, advantages and disadvantages of friction.							
4	4.2 Equilibrium of body on Horizontal and inclined plane:							
	Equilibrium of body on horizontal plane subjected to horizontal and inclined force.							
	Equilibrium of body on inclined plane subjected to forces applied parallel to the plane only.							
	Concept of ladder friction.							
	4.3 Introduction (only) - Dynamic friction							
	Course Outcome: CO4 Teaching Hours: 8 hrs Marks: 10 (R- 2, U- 4, A- 4)							
	Centroid and Centre Of Gravity:							
	5.1 Centroid:							
	Definition of centroid. Moment of an area about an axis. Centroid of basic geometrical							
	figures such as square, rectangle, triangle, circle, semicircle and quarter circle. Centroid of							
5	composite figure with not more than three geometrical figures.							
0	5.2 Center of gravity:							
	Definition, center of gravity of simple solids such as cylinder, sphere, hemisphere, cone,							
	cube, and rectangular block. Centre of gravity of composite solids with not more than Two							
	simple solids. (Hollow solids are expected.)							
	Course Outcome: CO5 Teaching Hours: 8 hrs Marks: 10 (R- 2, U- 2, A- 6)							
	Dynamics :							
	6.1 Kinetics : Definition of kinetics, Newton's laws of motion and its applications.							
	6.2 Kinematics : Definition of kinematics, Basic concepts of motion, rectilinear motion,							
	displacement, velocity, speed, acceleration.							
6	6.3 Angular motion : Introduction, definition of angular velocity, angular acceleration,							
	angular displacement, (Simple Numericals)							
	6.4Motion under gravity.							
	(No numerical on this subtopic)							
	Course Outcome: CO6Teaching Hours: 5 hrsMarks: 6 (R-2, U-0, A-4)							

Suggested Specifications Table (Theory):

Unit		Distribution of Theory Marks					
No	Topic Title	R	U	A	Total Marks		
		Level	Level	Level	Iviar KS		
1	Simple Machines	2	4	6	12		
2	Force Systems	4	4	4	12		
3	Equilibrium	2	4	4	10		
4	Friction	2	4	4	10		
5	Centroid and Centre Of Gravity	2	2	6	10		
6	Dynamics	2		4	6		
	Total	14	18	28	60		

List of experiments:

Sr.	Unit	COs	Title of the Experiments	
No.	No			
1	01	CO1	To determine MA, VR, Efficiency, Ideal Effort, Effort lost in friction for Differential axle & wheel and for Simple screw jack.	02
2	01	CO1	To determine MA, VR, Efficiency, Ideal Effort, Effort lost in friction for single purchase crab and for double purchase crab.	02
3	02	CO2	Verify law of polygon of forces	02
4	02	CO2	Graphically determine resultant of concurrent and non-concurrent force system.	04
5	02	CO2	Graphically determine resultant of parallel force system.	02
6	02	CO2	To verify law of moments.	02
7	03	CO3	To verify of Lami's theorem	02
8	03	CO3	To verify the Equilibrium of parallel forces – simply supported beam reactions	02
9	04	CO4	To determine coefficient of friction for motion on horizontal plane.	04
10	05	CO5	Determination of Centroid of basic geometrical figures such as square, rectangle, triangle, circle & Centre of gravity of simple solids such as cylinder, sphere, cone, cube.	04
11	06	CO6	Numericals on Angular motion	04
		Total		30

Note: All experiments are compulsory

References/ Books:

Sr. No.	Title	Author, Publisher, Edition and Year Of publication	ISBN
1	Engineering Mechanics	R.S.Khurmi, S. Chand & Company Ltd.	10-9352833961
2	Engineering Mechanics	Shames and Rao, Pearson Education.	13-978-0133569087
3	Engineering Mechanics	R.C.Hibbeler, Pearson Education.	13-978-0133073577
4	Applied Mechanics	S. Ramamruthum, Dhanpat Rai & Sones, Delhi.	10-935216427X

ESTD. 1960

E-References:

- 1. support@swayam.gov.in
- 2. arunasis@iitg.ernet.in
- 3. <u>www.google.com</u>
- 4. <u>www.youtube.com</u>
- 5. http://www.nationallibrary.gov.in

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	3	3	2	1	2	2	3	2	
CO2	3	3	3	2	1	1	2	3		
CO3	3	3	3	2	1	1	2	3		
CO4	3	3	3	2	1	1	2	3		
CO5	3	3	3	2	1	1	2	3		
CO6	3	3	3	2	1	1	2	3		

CO Vs PO and CO Vs PSO Mapping (CIVIL ENGINEERING)

CO Vs PO and CO Vs PSO Mapping (MECHANICAL ENGINEERING)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	3	3	3	2	1	2	2	3	2
CO2	3	3	3	2	600	TELCS	2	3	3
CO3	3	3	3	2	17	1	2	3	3
CO4	3	3	3	2	1	1	2	3	3
CO5	3	3	3	2	1	1	2	3	3
CO6	3	3	3	2	1	1	2	3	3

Industry Consultation Committee:

Sr. No	Name	Designation	Institute/Organisation
1	Shri Shivkumar Aade	Deputy Chief Engineer	Mhada
2	Shri Sharad Sonawane	Director	Om Ajay Constructions
3	Smt Yaxika Soni	Sr.Lecturer in Civil Engineering	S.B.M.Polytechnic
4	Smt Sanjana Male	Lecturer in Civil Engineering	G.P.Mumbai
5	Smt Ashwini Hagawane	Lecturer in Mechanical Engineering	G.P.Mumbai

Coordinator,

Curriculum Development, Department of Civil Engineering Head of Department Department of Civil Engineering

I/C, Curriculum Development Cell

Principal

Program	Programme : Diploma in Mechanical Engineering (Sandwich Pattern)										
Course	Code: N	/IE1920	19202 Course Title: Engineering Drawing-II								
Compul	Compulsory / Optional: Compulsory										
Teaching Scheme and Credits Examination Scheme											
L	Р	TU	Total	TH (3Hrs 30 min)	THTS1TS2PRORTWTotal(3Hrs(1Hr(1Hr,3030TWTotal303030min)min)Min)Total						
3	3		6	60	20	20			50	150	

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination. Note: For Minimum passing marks under various heads, refer, examination rule AR26.

Rationale:

Engineering drawing is the graphical language of Engineers. This is a graphical tool used by the Designers, Planners, Supervisors and Technician to express their thoughts, ideas and concepts. It offers students an insight into the methods of dealing with engineering drawing problems. This preliminary course aims at building a foundation for further course in machine drawing and other allied subjects. This subject is useful in developing imagination, drafting and sketching skills of students.

Course Outcomes: Student should be able to

CO1	Draw the projection of different models of regular solids.
CO2	Draw the projection of different cut models of regular solids.
CO3	Draw the development of lateral surfaces for different solids.
CO4	Draw Curves of intersection of the surfaces of different solids.
CO5	Draw the missing views and sectional missing views.
CO6	Draw the auxiliary views of different objects.

Course Content Details:

Unit No	Тс	opics / Sub-topics						
	Projection of Solids							
	1.1 Projections of Prism,	ism, Pyramid, Cone, Cylinder, Tetrahedron, Cube with their axes						
1	inclined to one reference plane and parallel to other.							
	1.2 Projections of above s	solids using auxiliary plane r	nethod					
	Course Outcome: CO1	Teaching Hours :06	Marks: 06 (R-0, U-0, A-6)					
	Sections of Solids							
2	Draw the sectional views for a cutting plane parallel to one perpendicular to other plane							
	2.1 Cone, Pyramid, Prisr	n & Cylinder resting on their	r base on Horizontal Plane.					

	2.2 Prism, Cylinder: a) Axis parallel to both the reference plane. b) Axis perpendicular to and							
	parallel to other plane							
	Course Outcome:CO2	Teaching Hours:08	Marks: 12(R-0, U-0, A-12)					
	Developments of Surfaces							
	3.1 Draw the development of	of lateral surfaces of cube, prism,	cylinder, pyramid and cone					
3	3.2 Development of surface	es such as tray, funnel, Chimney a	and pipe bends.					
	Course Outcome:CO3	Teaching Hours :09	Marks: 12(R-0, U-0, A-12)					
	Intersection of solids							
	4.1 Prism with prism, Cyl	inder with cylinder, Prism with C	ylinder When (i) the axes are at 90°					
4	and intersecting (ii) The axes are at 90° and Offset. and cone resting on base on HP and with							
-	axis intersecting and o	liset from axis of cylinder.						
	Course Outcome:CO4	Teaching Hours : 06	Marks:08 (R-0, U-0, A-08)					
	Missing views	DOI VIED						
_	5.1 Draw the missing view for a given orthographic views							
Э	5.2 Draw the sectional r	nissing view for a given orthog	graphic views					
	5-37							
	Course Outcome:CO5	Teaching Hours : 08	Marks:10 (R-0, U-0, A-10)					
	Auxiliary views	Auxiliary views						
	6.1 Concept of auxiliary plane							
6	6.2 Projection of object on auxiliary plane							
	0.5 Completing the auxil	hary views with the help of give.	II VIEWS					
	Course Outcome COC	Teaching Houng 100	Mowles, 12 (D. 0. 11.0. A. 12)					

Suggested Specifications Table (Theory):

Unit		Distribution of Theory Marks					
No	Topic Title	R Level	U Level	A Level	Total Marks		
1	Projection of Solids	0	0	06	06		
2	Sections of Solids	0	0	12	12		
3	Developments of Surfaces	0	0	12	12		
4	Intersection of solids	0	0	08	08		
5	Missing views	0	0	10	10		
6	Auxiliary views	0	0	12	12		
	Total	0	0	60	60		

List of Drawing Sheets

Sr.	Unit	COs	Title of the Experiments	Hours
No.	No			
1	1	CO1	Sheet No:1 Projection of Hexahedron/pyramid/prism /cone (one problem)	02
2	2	CO1	Sheet No:1 Projection of Hexahedron/pyramid/prism /cone with auxiliary method (one problem)	02
3	3	CO2	Sheet No:2 Sections of Solids such as cone/pyramid/cylinder/prism when true shape of the section is given (one problem)	04
4	4	CO2	Sheet No:2 Sections of Solids such as cone/pyramid/cylinder/prism when cutting section is given (one problem)	04
5	5	CO3	Sheet No:3Developments of Surfaces such as cone/pyramid/cylinder/prism when cutting section is given (one problem)	04
6	6	CO3	Sheet No:3 Developments of Surfaces such as Tray/ Elbow/Pipe Joints (one problem)	04
7	1	CO4	Sheet No:4 Intersection of solids interpenetrating solid intersecting their axis such as prism with prism or cylinder with cylinder or cone with cylinder (Two problems)	04
8	2	CO4	Sheet No:4Intersection of solids interpenetrating solid with offset in their axis such as prism with prism or cylinder with cylinder or cone with cylinder (Two problems)	05
9	3	CO5	Sheet No:5Missing views (Two problems)	04
10	4	CO5	Sheet No:6Missing sectional views (Two problems)	04
11	5	CO6	Sheet No:7Auxiliary views (Two problems)	04
12	6	CO6	Sheet No:8 Complete the Top view/ Front view when auxiliary view is given (Two problems)	04
	Total			45

Note: All Sheets are compulsory.

References/ Books:

Sr. No.	Title	Author, Publisher, Edition and Year Of publication	ISBN
1	Engineering drawing	N.D.Bhatt, Charotar Publishing House, 53 rd Edition, 2016	978-9380-3581-78
2	Engineering Graphics	P.J. Shah, S. Chand, revised edition,2014	978-8121-9296-79
3	Engineering Drawing	Amar Pathak, Wiley Publication,1 st Ed. 2010	978-9350-0401-64
4	Engineering drawing	D.Jolhe, Tata McGraw Hill Education,2017	978-0070-6483-71

5	Textbook on engineering drawing	K.L.Narayan,P.Kannaiah, Scitech publications, 24 th reprint, 2010,	978-8183-7142-28
6	Engineering drawing practice For school and colleges	IS Code SP-46	-

E-References:

- 1. https://ocw.mit.edu.courses.drawing
- 2. https://nptel.in.courses.drawin
- 3. http://home.iiik.edp.ac.in

CO Vs PO and CO Vs PSO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	02	01	01	01	01	01	02	01	01
CO2	02	01	01	01	01	01	02	01	01
CO3	03	01	02	01	01	01	03	01	01
CO4	03	01	02	01	01	01	03	01	01
CO5	02	01	02	01	01	01	03	01	01
CO6	02	01	02	01	01	01	03	01	01

Industry Consultation Committee:

Sr. No	Name	Designation	Institute/Organization
1	Mr. Kiran Pawar	Managing Director	Seven star solar system Ltd
2	Mr. K.B. Salunkhe	Sel. Grade Lecturer in Mechanical Engineering	Government Polytechnic,Thane
3	Dr. S. B. Mahagaonkar	Sel. Grade Lecturer in Mechanical Engineering	Government Polytechnic, Mumbai
4	Mr. K. Z. Dhangare	Lecturer in Mechanical Engineering	Government Polytechnic, Mumbai

Coordinator,

Curriculum Development, Department of Mechanical Engineering Head of Department Department of Mechanical Engineering

I/C, Curriculum Development Cell

Principal

GOVERNMENT POLYTECHNIC MUMBAI

(Academically Autonomous Institute of Government of Maharashtra)

Department of Mechanical Engineering P19 Curriculum Third Semester

GOVERNMENT POLYTECHNIC MUMBAI

(Academically Autonomous Institute, Government of Maharashtra)

Teaching and Examination Scheme (P19)

With effect from AY 2019-20

Programme: Diploma in Mechanical Engineering (Sandwich Pattern)

C			aching I	Contact		Examination Scheme (Marks)							
Course	Course Title					Credits l	Theory						
Coue		L	Р	TU	Total		TH	TS1	TS2	PR	OR	TW	Total
ME19203	MANUFACTURING PROCESSES	2	4	NA.	6	6	60	20	20	25*		25	150
ME19210	STRENGTH OF MECHANICAL MATERIALS	3	2		5	5	60	20	20			25	125
ME19205	BASIC THERMODYNAMICS	2	2	No.	4	4	60	20	20			25	125
ME19206	THEORY OF MACHINES	3	2		5	5	60	20	20			25	125
ME19301	MACHINE DRAWING & COMPUTER AIDED DRAFTING	4	4	P	4	4				25*		25	50
ME19207	FLUID MECHANICS AND MACHINERY	2	2	Œ	4	. 4	60	20	20			25	125
ME19103	ENVIRONMENTAL STUDIES	(1756	2#		2	2	7						
	Total	12	18		30	30	300	100	100	50		150	700
	Student Centered Activity (SCA)				05								
	Total Contact Hours				35								

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment)

* Indicates assessment by External Examiner else internal practical skill test, #indicates self, on- line learning Mode, @ indicates on line examination Note: Duration of Examination--TS1&TS2 -1 hour, TH- 2 hours 30 min, PR/OR - 3 hours per batch, SCA- Library -1 hour, Sports- 2hours, Creative Activity-2 hours

Indicates Self, on- line learning Mode through MOOCs/Spoken Tutorials /NPTEL/SWAYAM/FOSSEE etc.

Department Coordinator, Curriculum Development, Dept. of Mechanical Engineering Head of Department Dept. of Mechanical Engineering In-Charge Curriculum Development Cell Principal

Term / Semester -III

Program	Programme : Diploma in Mechanical Engineering (Sandwich Pattern)									
Course	Course Code: ME 19203 Course Title: Manufacturing Processes									
Compul	Compulsory / Optional: Compulsory									
Teachin	Teaching Scheme and Credits Examination Scheme									
L	Р	TU	Total	TH (2 Hrs 30min)TS1 (1 Hr)TS2 (1 Hr)PRORTWTo					Total	
2	4		6	60	20	20	25*		25	150

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination Note: For Minimum passing marks under various heads, refer, examination rule AR26. Two practical skill tests are to be conducted. First skill test at mid-term and second skill test at the end of the term.

Rationale:

Manufacturing is the basic area for any mechanical engineering technician. The technician should be exposed to basic manufacturing processes. This course will help the student to get familiarized with working principle and operation like turning, drilling, milling, casting, and joining processes etc. Basic knowledge of these processes will help the technician to select most appropriate process for getting the desired results in terms of getting raw material converted in to finish product, as per the requirement. DEVEL

Course Outcomes:	Student should	be able to

CO1	Describe basic foundry procedures
CO2	Describe sheet metal presses and press operations
CO3	Describe basic joining processes and their applications
CO4	Describe construction and various operations carried out using lathe and boring machine
CO5	Describe constructional features, types of milling machines and drilling machines and operations using them
CO6	Describe grinding machines, operations performed using them and surface treatment processes

Course Content Details:

Unit No	Topics / Sub-topics						
	Foundry Practice:						
	1.1. Pattern materials, types of patterns, pattern allowances, color coding, moulding						
	tools and equipment,						
	1.2. Moulding sands, types of sands, sand properties,						
1	1.3. Elements of sand moulds, Machine molding,						
	1.4. Permanent mould casting-Gravity & Pressure Die casting,						
	1.5. Cupola furnace, defects in castings and remedies,						
	1.6. Safety precautions in foundry						
	Course Outcome: CO1	Teaching Hours :04	Marks: 08 (R- 0, U-4, A-4)				

Page.

	Press Working.						
	2.1 Types of presses, press specification, parts of press, press classification						
2	2.2 Press tools: dies and nunches Press operations. Elements of press tool						
-	2.3 Safety while working in press shop						
	2.5 Safety while working in press shop Course Outcome: CO2 Teaching Hours :04 Marks: 06 (P. 0. U. 2. A. 4)						
	Joining Processes:						
	3.1 Principle of welding processes. Classification of welding processes.						
	3.2 Arc welding- Welding machines. Contents of electrodes for arc welding, manual arc						
	welding, TIG/MIG welding, Submerged arc welding, hvdrogen arc welding,						
	3.3 Gas welding set up for oxy acetylene welding, types of flames, their applications,						
3	3.4 Resistance welding- Spot, seam, projection, butt resistance welding.						
	3.5 Defects in welding and their causes						
	3.6 Brazing and soldering-process & applications						
	3.7 Safety precautions in joining processes						
	5.7 Safety precautions in joining processes.						
	Course Outcome: CO3 Teaching Hours :04 Marks: 08 (R- 2,U-2, A-4						
	Lathe Machines:						
	4.1 Centre lathe specification, different parts. Lathe classification,						
	4.2 Lathe operations: turning, boring, parting off, knurling, facing, drilling, taper turning,						
4	thread cutting.						
	4.3 Single point cutting tool geometry,						
	4.4 Safety precautions while working on lathe						
	Course Outcome: CO4 Teaching Hours :04 Marks: 08 (R- 2, U-4, A-2)						
	Milling machines classification different parts of Column and Knee type milling						
	machine.						
	5.2 Milling machine operations.						
5	5.3 Down milling up milling plain milling cutter						
	5.4 Gear cutting with simple indexing						
	5.5 Safety precautions while working on milling machines						
	5.5 Safety precautions while working on mining machines						
	Course Outcome: CO5 Teaching Hours :04 Marks: 08 (R-2, U-4, A-2)						
	Drilling machines:						
	6.1 Classification of drilling machines,						
	6.2 Different parts of Radial drilling machine and Column type drilling machine,						
(6.3 Drilling machine operations.						
0	6.4 Twist drill nomenclature,						
	6.5 Safety precautions while working on drilling machines						
	Course Outcome: CO5 Teaching Hours :04 Marks: 08 (R-2, U-4, A-2)						

	Boring Machines:							
	7.1 Classification of boring machines, Different parts of horizontal boring machine,							
	specification of boring machine.							
-	7.2 Operations of boring machine,							
1	7.3 Boring head, facing head, boring tools,							
	7.4 Safety precautions while working on boring machine							
	Course Outcome: CO4 Teaching Hours :04 Marks: 06 (R-2, U-2, A-2)							
	Grinding Machines and Surface Treatments							
	8.1 Classification of grinding machines,							
	8.2 Grinding machine operations,							
	8.3 Grinding wheel: abrasives, grit, bond, grades, structure, and grinding wheel specification.							
8	8.4 Safety precautions while working on grinding machine.							
	8.5 Surface Treatment, Need of surface treatment, Surface anodizing, Cadmium coating,							
	Galvanizing,							
	8.6 Safety precautions in surface treatments							
	Course Outcome: CO6 Teaching Hours :04 Marks: 08 (R-2, U-2, A-4)							

Suggested Specifications Table (Theory)

Unit		Distribution of Theory Marks						
No	Topic Title	R Level	U Level	A Level	Total Marks			
1	Foundry Practice	8-	4	4	8			
2	Press Work	-	2	4	6			
3	Joining Processes	2	2	4	8			
4	Lathe Machine	2	4	2	8			
5	Milling Machine	2	4	2	8			
6	Drilling Machine	2	4	2	8			
7	Boring Machine	2	2	2	6			
8	Grinding Machine	2	2	4	8			
	Total	12	24	24	60			

List of Practicals:

Sr. No.	Unit No	List of Experiments	CO	Hours
1	1	Making one wooden pattern	CO1	8
2	1	Making one simple job on moulding	CO1	6
3	3 ² One simple job on press		CO2	4
4	4 ³ Making a simple job on welding joint			6
5	5 ⁴ One plain turning job on center lathe		CO4	6
6	4	One job on thread cutting, chamfering, filling on centre lathe	CO4	8
7	4	One job on step turning, taper turning on lathe	CO4	8
8	5	One job of gear cutting on milling machine and lathe	CO5	8
9	8	Tool grinding practice	CO6	6
		Total		60

Instructions:

• A specimen job is to be prepared and demonstrated by concerned workshop instructor

before giving job to the students.

- Students will maintain a diary containing the details of the job as above.
- Theory contents are to be taught by faculty /workshop superintendent.
- Term end practical examinations on one of above machines for three hours duration

References/ Books:

Sr. No.	Title	Author, Publisher, Edition and Year Of publication	ISBN
1	Introduction to	Jhon Schey, Mcgraw	978-0071-1691-
-	Manufacturing Processes	Hills, 2012	10
C	A course in of Workshop	B S Raghuwanshi, Dhanpatrai	978-1020092015
2	Technology Volume. I	& Sons, 2017	570-1020032010
	Elements of Workshop	Hajra Chawdhury, Media	
3	Technology Vol. II (Machine	Promotors and Publications Pvt.	978-8185099156
	Tools)	Ltd. 15 th Ed, 2008	
	Elements of Workshop	Hajra Chawdhury, Media	
4	Technology Vol. I	Promotors and Publications Pvt.	978-8185099149
	(Manufacturing Processes)	Ltd. 15 th Ed, 2008	

E-References:

- www.engineeringpractice.org>lathe
- <u>www.hnsa.org>wp-contents</u>
- <u>www.learmmechanical.com>drillingmachine</u>
- www.americanamchinist.com>article>cuttingtools
- www.theengineerspost.com>broachingmachine www.reliance-foundry.com
- www.eskaymachine.com

CO Vs PO and CO Vs PSO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	2	2	2	2	1	2	2	3	3
CO2	2	2	2	1	1	2	2	2	3
CO3	3	2	2	20	WTE:	3	2	2	2
CO4	3	2	2	3	2	3	2	3	3
CO5	2	2	2	3	2	2	2	2	2
CO6	1	2	2	2	2)	1	2	1	2

Industry Consultation Committee:

Sr. No	Name	Designation	Institute/Organisation
1	Mr. Hiremath P.	Sr. Engineer	Reliance Industries, Navi Mumbai
2	Mr. Rao V B	Asst. Professor	Fr. C.R.C. Engg, Mumbai
3	Mr. Puralkar Mohanish	Manager, R&D	Miles Ahead Tech Pvt Ltd
4	Mr. Ambadekar N M	Work shop Superintendent	Govt. Polytechnic, Thane
	Mr. Joshi S. V.	Lecturer in Mech. Engg.	Govt. Polytechnic, Mumbai
	Mr. Ansari N N	Lecturer in Mech. Engg.	Govt. Polytechnic, Mumbai

Coordinator,
Curriculum Development,
Department of Mechanical Engineering

Head of Department Department of Mechanical Engineering

I/C, Curriculum Development Cell

 $Page \mathbf{5}$

Principal

Programme : Diploma in Mechanical Engineering (Sandwich Pattern)										
Course Code: ME19210				Course Title: Strength of Mechanical Materials						
Compulsory / Optional: Compulsory subject										
Teach	ing Sche	me and (Credits	Examination Scheme						
L	Р	TU	Total	TH (2 Hrs. 30 min)	TS1 (1 Hr.)	TS2 (1 Hr.)	PR	OR	TW	Total
3	2	-	5	60	20	20	-	-	25	125

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination Note: For Minimum passing marks under various heads, refer, examination rule AR 26. Two practical skill test are to be conducted. First skill test at mid-term and second skill test at the end of the term.

Rationale: Diploma holders in this course are required to analyse reasons for failure of different components and select the required materials for different applications. For this purpose, it is essential to teach them concepts, principles, applications and practices covering stress, strain, bending moment, shearing force, shafts, columns and springs. Hence this subject has been introduced. It is expected that efforts will be made to provide appropriate learning experiences in the use of basic principles to the solution of applied problems to develop the required competencies.

Course Outcomes: Student should be able to

CO1	Analyze/compare various mechanical properties and develop theoretical basics for axial loading, bending and buckling.
	ESTD. 1960/55
CO2	Calculate principal stresses using analytical and graphical Mohr's circle diagram
CO3	Solve moment of inertia for different sections, section modulus and bending stress.
CO4	Draw shear force diagram & bending moment diagram and calculating slope/deflection for the structural components subjected to lateral loading.
CO5	Analyze direct/bending stresses, Eccentric and Buckling load.
CO6	Evaluate strain energy stored in the element subjected to gradual/sudden/impact loads and numerical on torsional shear stress

Course Content Details:

Unit No	Topics / Sub-topics								
1	Mechanical Properties of Materials, Simple stresses & Strains								
	1.1 Types of loads, Simple stresses & strains viz. tensile, compressive, Shear, Crushing,								
	Ther	Thermal stresses, Hoop stresses & corresponding strains, Volumetric Strain, Bulk							
	mody	modulus, Hook's law, Young's modulus, Modulus of Rigidity, stress-strain curves for							
	ducti	lle & brittle materials, Po	oisson's ratio.						
	1.2 Conc	epts of Buckling – Ranki	ne's & Euler's formulae for bu	ckling load for columns / shafts					
	unde	r compression, concept	s of equivalent length for vari	ous end conditions.					
	(Proł	plems on compressive &	tensile stresses. Thermal str	esses, butt & lap riveted joints,					
	simp	le cases of buckling).							
	1.3 Conc	epts of Deflection & slo	ope of beams – relation betw	veen bending moment & slope.					
	Defle	ection of simply support	ed beams and cantilever bea	ms subjected to point load. (No					
	deriv	vation)							
	Course O	utcome: CO1,	Teaching Hours: 8	Marks: 10(R-2, U-4, A-4)					
2	Principal	planes & Principal st	resses						
	2.1 Concer	pt of principal planes & s	tresses. Definition of principal	planes, principal stresses, oblique					
	plane a	and obliquity.	C.						
	2.2 Differe	ent states of stresses, norm	nal & tangential stress on oblig	ue plane, resultant stress.					
	2.3 Analyt	2.3 Analytical and graphical method (Mohr's Circle) for locating principal plane and calculating							
	princip	al stresses for uniaxial/bi	axial loading.						
		CO 2	TIT						
3	Course O Moment o	utcome: CO2 f Inertia & Bending str	l eaching Hours : 0	Marks: 10 (R-2, U-4, A-4)					
0	2 1 Mome	nt of Inortia							
	3.1 Mone	Moment of Inertia (M I) MI for plane areas radius (for regular plane					
	5.1.1	areas	J. M.I. IOI plane areas, raulus (n gyration, M. 101 regular plane					
	3.1.2	Rectangle, triangle, c	ircle, semi-circle, hollow re	ctangular and hollow circular					
		section.	VOWI EDGE	C					
	3.1.3	Parallel axes theorem	& Perpendicular axes theorem	n (no derivation)					
	314		-	(
	5.1.4	M.I of symmetrical and	l unsymmetrical I sections, ch	annel and angle sections and T					
	5.1.4	M.I of symmetrical and section. M.I of built up	d unsymmetrical I sections, ch o sections symmetrical and u	nannel and angle sections and T nsymmetrical about centroidal					
	5.1.4	M.I of symmetrical and section. M.I of built up axis.	d unsymmetrical I sections, ch o sections symmetrical and u	nannel and angle sections and T nsymmetrical about centroidal					
	3.2 Bendi	M.I of symmetrical and section. M.I of built up axis. ng stresses	d unsymmetrical I sections, ch o sections symmetrical and u	nannel and angle sections and T nsymmetrical about centroidal					
	3.2 Bendi 3.2.1	M.I of symmetrical and section. M.I of built up axis. ng stresses Theory of simple ber	d unsymmetrical I sections, ch o sections symmetrical and u nding, equation of bending.	nannel and angle sections and T nsymmetrical about centroidal					
	3.2 Bendi 3.2.1 3.2.2	M.I of symmetrical and section. M.I of built up axis. ng stresses Theory of simple ber Assumptions in the t	d unsymmetrical I sections, ch o sections symmetrical and u nding, equation of bending. heory of bending, moment	of resistance, section					
	3.2 Bendi 3.2.1 3.2.2	M.I of symmetrical and section. M.I of built up axis. ng stresses Theory of simple ber Assumptions in the t modulus & neutral a	d unsymmetrical I sections, ch o sections symmetrical and u nding, equation of bending. cheory of bending, moment xis. Simple numerical.	of resistance, section					
	3.2 Bendi 3.2.1 3.2.2	M.I of symmetrical and section. M.I of built up axis. ng stresses Theory of simple ber Assumptions in the t modulus & neutral at	d unsymmetrical I sections, ch o sections symmetrical and u nding, equation of bending. heory of bending, moment xis. Simple numerical.	of resistance, section					
4	3.2 Bendi 3.2.1 3.2.2 Course O	M.I of symmetrical and section. M.I of built up axis. ng stresses Theory of simple ber Assumptions in the t modulus & neutral at utcome: CO3	d unsymmetrical I sections, ch o sections symmetrical and u nding, equation of bending. heory of bending, moment xis. Simple numerical. Teaching Hours: 8	nannel and angle sections and T nsymmetrical about centroidal of resistance, section Marks: 10(R-2, U-4, A-4)					
4	3.2 Bendi 3.2.1 3.2.2 Course O Shear For 4.1 Type	M.I of symmetrical and section. M.I of built up axis. ng stresses Theory of simple ber Assumptions in the t modulus & neutral at utcome: CO3 ce & Bending Moment s of beams, types of sup	d unsymmetrical I sections, ch o sections symmetrical and u nding, equation of bending. cheory of bending, moment xis. Simple numerical. Teaching Hours: 8	nannel and angle sections and T nsymmetrical about centroidal of resistance, section Marks: 10(R-2, U-4, A-4) of Shear force (S.F) and bending					
4	3.2 Bendi 3.2.1 3.2.2 Course O Shear For 4.1 Type mom	M.I of symmetrical and section. M.I of built up axis. ng stresses Theory of simple ber Assumptions in the t modulus & neutral at utcome: CO3 ce & Bending Moment s of beams, types of sup ent (B.M).	d unsymmetrical I sections, ch o sections symmetrical and u nding, equation of bending. cheory of bending, moment xis. Simple numerical. Teaching Hours: 8 ports, concept and definition o	hannel and angle sections and T nsymmetrical about centroidal of resistance, section Marks: 10(R-2, U-4, A-4) of Shear force (S.F) and bending					

 ${\rm Page}\, 2$

		(No problem to be set for	r External moment or couple)						
	12 5	E and BM diagrams for	r contilever subjected to point los	d & UDI Location of point of					
	4.5 S.F and B.W diagrams for calificever subjected to point foad & ODL. Location of point of								
	CC	ontraflexure and maxim	um bending moment calculations	s (if any).					
		(No problem to be for Ex	ternal moment or couple)						
	C	0 / 00/							
	Course	e Outcome: CO4	Teaching Hours: 10	Marks: 12 (R-2, U-6, A-4)					
5	Direct and bending stresses								
	5.1 C	oncept of direct and bend	ing stresses, section modulus.						
	5.2 E	ccentric loads, core or ker	rnel of section, middle third rule, m	niddle fourth rule.					
	5.3 M	lembers of uniform sec	tions subjected to eccentric load	ds with eccentricity and stress					
	di	stribution at the base.							
	5.4 St	tructure subjected to horiz	zontal, vertical loads e.g. tie bars, c	olumns etc.					
			-						
	Course	e Outcome: CO5	Teaching Hours: 6	Marks: 8 (R-0, U-4, A-4)					
6	Strain	Energy & Torsion							
	6.1	Strain Energy							
	6.1.1	Definition and Concep	t of Strain energy,						
	6.1.2	Types of loading gradu	ual, sudden & Impact loading.						
	6.1.3	Stresses developed due	e to gradual, sudden & impact lo	oad.					
	6.1.4	Strain energy stored du	ie to gradual, sudden & impact l	loading.					
	6.1.5	Resilience, proof resili	ence and modulus resilience.	C					
	6.2	Torsion	12 Starter						
	6.2.1	Stresses, strain & defo	rmations in determinate shafts o	f solid & hollow.					
	Нс	mogeneous & compos	ite circular cross section subject	ed to twisting moment.					
	622	Derivation of torsion e	quation Simple Numericals						
	5.2.2		Transford Study of Contestions	-4					
	Course	e Outcome: CO6	Teaching Hours: 7	Marks: 10 (R-2, U-4, A-4)					

Suggested Specifications Table (Theory):

Unit	The Star	Distribution of Theory Marks					
No	Topic Title VOWLEDGE	R Level	U Level	A Level	Total Marks		
1	Mechanical Properties of Materials, Simple stresses & Strains	2	4	4	10		
2	Principal planes & Principal stresses	2	4	4	10		
3	Moment of Inertia & Bending stresses	2	4	4	10		
4	Shear Force & Bending Moment	2	6	4	12		
5	Direct and bending stresses	-	4	4	08		
6	Energy & Torsion	2	4	4	10		
	Total	10	26	24	60		

1.9

List of experiments:

Sr.	Unit	COs	Title of the Experiments	Hours
No.	No			
1	1	CO1	Tensile test on Mild steel/ Aluminium specimen, plotting of stress	04
			strain curve and indicating significant point as per I.S. requirement	
2	1	CO1	Izod impact test on M.S., Copper, Aluminum and Brass	
3	2	CO2	To find principal stresses and to locate principal plane using Mohr circle method and validate the same with numerical method. (Two different cases)	
4	2	CO3	Bending test on mild steel/timber.	04
	and	and		
	4	CO4		
5	3	CO3	Assignment on Moment of Inertia & Bending stresses.	02
6	4	CO4	To draw shear force and bending moment diagram for different kinds of loads	02
7	5	CO5	Assignment on Direct and bending stresses.	02
8	6	CO6	Assignment on Strain Energy & Torsion.	02
9	1	CO1	Shear test – Single and double shear for mild steel bar	02
10	1	CO4	Deflection test on timber / metal specimen	02
11	6	CO6	Torsion test on metal bar	02
12	1	CO1	Hardness test (Brinell Hardness) on various metals.	02
13	1	CO1	Compression testing on metal/timber.	02
			Total	30

Note: All experiments/assignments are compulsory

References/ Books:

Sr. No	Title	Author, Publisher, Edition and Year Of publication	ISBN
1	Strength of Materials	S. Timoshenko, D. Van Nostrand Company Inc. 3 rd Ed, 1956	978-1124-1550-98
2	Strength of Materials	R.K. Bansal, Laxmi Publication Pvt Ltd. Revised Ed, 2010	978-8131-8081-46
3	Strength of Materials	R. K. Rajput, S. Chand & Company Ltd., 5 th Ed, 2015	978-9385-4013-67
4	Strength of Materials	S. Ramamrutham, Dhanpat Rai and sons Publishing House, 16 th Ed, 2011	978-9384-3782-64
5	Text Book of Strength of Materials	R.S. Khurmi, S. Chand & Company Ltd. 2015	978-9385-4019-54
6	Study of Materials	Ferdinand L. Singer, Harper & Row Publisher, New York, 4 th Ed	978-0063-5059-95

$P_{age}4$

E-References:

- 1) <u>https://nptel.ac.in/courses/Webcourse-contents/IIT-</u>
- ROORKEE/strength%20of%20materials/homepage.htm
- 2) <u>https://onlinecourses.nptel.ac.in/noc17_ce22/preview</u>
- 3) <u>https://nptel.ac.in/Aeronautical/Strength%20of%20Materials/course_strength%20of%20materials.pdf</u>

4) <u>https://www.slideshare.net/khagendragautam/strength-of-material-3-som-mechanical-engineering-handwritten-classes-notes-study-materials-for-ies-ps-us-gate</u>

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	2	2	2	1	2	1	3	2	1
CO2	2	3	2	1	2	2	3	2	1
CO3	3	2	3	2	2	2	3	3	1
CO4	3	3	3	2	2	2	3	3	1
CO5	3	3	3	2	2	2	3	3	1
CO6	1	3	3	2	2	2	3	3	1

CO Vs PO and CO Vs PSO Mapping

Industry Consultation Committee:

Sr.	Name	Designation	Institute/Organisation
No			
1	Dr. Shashikant N. Joshi	Assistant Superintending	Water Resource Department,
		Engineer, Mechanical Circle	Central Building, Pune-01
2	Dr. Prashant G. Khakse	Training Officer, Training Division	Senior Engineer, Maintenance Training Organization Air- India Engineering services Ltd., old airport, Santacruz (E), Mumbai
3	Dr. P. G. Gaikwad,	Associate Professor, Civil Engineering Department.	Sardar Patel College of Engineering, Andheri(W), Mumbai
4	Dr. Shivaji M. Dumne	Sr. Lecturer in Civil Engineering Department	Government Polytechnic Awasari(kh)Ta: Ambegaon, Dist Pune 412405
5	Prof. Dipak Choudhari	Asst. Professor, Mechanical Engineering Department	Vidhyavardhani College of Engineering, Vasai, Dist. Palghar.
6	Mr. Gaurav Dharme	Work Shop Superintendent	Fr. Agnel Technical Institute, Bandra (W), Mumbai
7	Prof. Dinesh H. Kamble	HOD, Mechanical Engineering Department.	Govt. Polytechnic Mumbai, Bandra (E), Mumbai, Maharashtra 400051
8	Dr. Avinash A. Lonkar	Sr. Lecturer in Mechanical	Govt. Polytechnic Mumbai, Bandra
		Engineering	(E), Mumbai, Maharashtra 400051
9	Dr. Sunil B. Mahagaonkar	Sr. Lecturer in Mechanical	Govt. Polytechnic Mumbai, Bandra
	_	Engineering	(E), Mumbai, Maharashtra 400051

Coordinator,

 ${}^{\mathrm{Page}}\mathbf{5}$

Curriculum Development,

Head of Department Department of Mechanical Engineering

Department of Mechanical Engineering

I/C, Curriculum Development Cell

Principal

Program	Programme : Diploma in Mechanical Engineering (Sandwich Pattern)									
Course Code:ME19205				Course Title: Basic Thermodynamics						
Compul	Compulsory / Optional: Compulsory									
Teaching Scheme and Credits			l Credits	Examination Scheme						
L	Р	TU	Total	TH (2Hrs 30 min)	TS1 (1 Hr)	TS2 (1Hr)	PR	OR	TW	Total
2	2		04	60	20	20			25	125

Abbreviations: TH- Theory; PR-Practical; TU-Tutorial; TS1 and TS2- Term Tests; OR-Oral Exam; TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal assessment Note: For Minimum passing marks under various heads, refer, examination rule AR26.

Rationale: Basic thermodynamics is one of the core engineering subjects for mechanical engineering students. A diploma holder is supposed to maintain steam generators, turbines, compressors, IC engines, refrigerators and other power plant equipment. Therefore, it is essential to impart him basic concepts of thermodynamics, steam generators, steam turbines, and heat exchangers. This course will enable students to establish foundation required to design, operate and maintain these devices.

Course Outcomes: Student should be able to

CO1	Describe the basic concepts of thermodynamics.
CO2	Apply gas laws for given processes.
CO3	Describe various thermodynamic reversible processes.
CO4	Apply first and second law for the thermodynamic systems.
CO5	Describe the working, construction and applications of steam boilers.
CO6	Describe different modes of heat transfer.

Course Content Details:

Unit No	Topics / Sub-topics
1	 Fundamental Concepts 1.1 Thermodynamic state and system, boundary, surrounding, universe. Thermodynamic systems-closed, open, isolated, adiabatic, homogeneous and heterogeneous, macroscopic and microscopic. Industrial examples of different thermodynamic systems. 1.2 Properties of system – intensive and extensive, thermodynamic equilibrium, quasi – static process, reversible and irreversible processes. 1.3 Zeroth law of thermodynamics, definition of properties like pressure, volume, temperature, enthalpy, internal energy.
	Course Outcome: COI Teaching Hours: 06 Marks: 10(R-4, U-2, A-4)
2	 Ideal Gases 2.1 Definition of an ideal gas, explanation of ideal gas laws – Boyle's law, Charle's law, Gay-Lussac's Law, Avogadro's law. 2.2 Universal gas constant, Characteristic gas constants, Specific heat at constant pressure,

	specific heat at constant volume of gas, simple problems on gas equation.Course Outcome:CO2Teaching Hours: 03Marks:08 (R-2, U-2, A-4)					
3	 Thermodynamic Processes on Gases 3.1 Types of thermodynamic processes – isochoric, isobaric, isothermal, hyperbolic, isentropic, polytropic and throttling processes, 3.2 Equations representing the processes Derivation of work done, change in internal energy, rate of heat transfer for the above processes. Course Outcome: CO3 Teaching Hours: 03 Marks:08 (R-2, U-2, A-4) 					
	Laws of Thermodynamics					
4	 4.1 Laws of conservation of energy, first law of thermodynamics (Joule's experiment), Limitations of first law of thermodynamics, Application of first law of thermodynamics to non-flow systems -Constant volume, constant pressure, Adiabatic and polytropic processes. 4.2 Steady flow energy equation, Application of steady flow energy to equation, turbines, pump, boilers, nozzles. 4.3 Heat source and heat sinks, statement of second laws of thermodynamics: Kelvin Planck's statement, Clasius statement, Perpetual motion Machine of first kind, second kind, Carnot engine, Introduction of third law of thermodynamics, concept of irreversibility, entropy. 					
	Departing of Steam & Steam Consectors					
5	 5.1 Formation of steam and related terms, thermodynamics properties of steam, steam tables, internal latent heat, internal energy of steam, Mollier diagram (H – S Chart), Expansion of steam, Hyperbolic, reversible adiabatic and throttling processes 5.2 Quality of steam (dryness fraction).(Numerical) 5.3 Steam Generators : 					
	 5.4 Uses of steam, classification of boilers, comparison of fire tube and water tube boilers. Construction features of Cochran, La-mont and Loeffler, Lancashire boiler, Babcock & Wilcox Boiler. Boiler mountings and accessories, Introduction to modern boilers. Course Outcome: CO5 Teaching Hours: 06 Marks:12 (R-2, U-4, A-6) 					
6	 Introduction to Heat Transfer 6.1 Modes of heat transfer conduction, convection and radiation. 6.2 Conduction- Fourier's law, thermal conductivity conduction through cylinder, thermal resistance, composite walls, list of conducting and insulating materials. 6.3 Convection- Newton's law of cooling, Natural and forced convection. 6.4 Radiation- thermal radiation, absorptivity, emissivity, black and grey bodies, Stefan – Boltzmann law. 6.5 Heat exchangers – classification, construction and working of shell and tube, shell and coil, pipe in pipe type and plate type heat exchanger. Course Outcome: CO6 Teaching Hours: 05 Marks: 10 (R-2, U-4, A-4) 					

Suggested Specifications Table (Theory):

Unit		Distribution of Theory Marks					
No	Topic Title	R Level	U Level	A Level	Total Marks		
1	Fundamental Concepts	4	2	4	10		
2	Ideal Gases	2	2	4	8		
3	Thermodynamic Processes on Gases	2	2	4	8		
4	Laws of Thermodynamics	4	2	6	12		
5	Properties of Steam & Steam Generators	2	4	6	12		
6	Introduction to Heat Transfer	2	4	4	10		
	Total	16	16	28	60		

List of experiments:

INT POLYTECHN

Sr. No.	Unit No	COs	Title of the Experiments / Assignment	Hours
1	1	CO1	Assignment on fundamental concepts of thermodynamics.	02
2	2	CO2	Assignment on ideal gases.	02
3	3	CO3	Assignment on thermodynamic processes on Gases.	02
4	4	CO4	Assignment on Laws of Thermodynamics.	02
5	5	CO5	Demonstration of working of different types of boilers. Such as Nestler boiler, Cochran, La-mont and Loeffler, Lancashire boiler, Babcock & Wilcox Boiler.	04
6	5	CO5	Study of boiler of mountings.	02
7	5	CO5	Study of boiler accessories.	02
8	5	CO5	Determination of dryness fraction of a given sample of steam by using separating calorimeter.	02
9	5	CO5	Visit to industry using boiler.	02
10	6	CO6	Demonstration of heat transfer through conduction, convection and Radiation	02
11	6	CO6	Calculate thermal conductivity of metallic rod.	04
12	6	CO6	Identify different equipment in power engineering lab having heat exchangers and classify heat exchangers. Write construction and working of any 03 of above heat exchangers.	04
			Total	30

Page**3**

References/ Books:

Sr. No.	Title	Author, Publisher, Edition and Year Of publication	ISBN
1	Engineering Thermodynamics	PK Nag; Tata McGraw Hill,Delhi, 6 th Ed, 2005	978-9352-6064-29
2	Basic Engineering Thermodynamics	Roy Chaudhary; Tata McGraw Hill,Delhi, 8 th Ed, 1973	978-0070-9658-81
3	Engineering Thermodynamics	CP Arora; Tata McGraw Hill,Delhi, 2017	978-0074-6201-44
4	Thermal Engineering	R.S. Khurmi,& J.K.Gupta S. Chand Technical Publication, 2006	978-8121-9257-30
5	Thermal Engineering	P.L.Ballaney ,Khanna Publication, 24 th Ed, 2009	978-8174-0903-17
6	A Course in Thermal Engineering	Domkundwar .S, Kothandaraman C. P. Domkundwar, Dhanpat Rai & sons. 2016	978-8177-0002-14
7	Thermal Engineering	M.M.Rathore, Tata McGraw Hill, 2010	978-0070-6811-32
8	Thermal Engineering	Rajput R.K, Firewall Media, New Delhi 2005	978-8170-0883-49

E-References:

- 1. https://swayam.gov.in/
- 2. <u>www.youtube.com</u>
- 3. <u>https://learnengineering.org/</u>
- 4. https://nptel.ac.in/

CO Vs PO and CO Vs PSO Mapping:

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	3	3	2	2	1	2	2	2	1
CO2	2	2	1	1	2	2	1	2	2
CO3	3	2	2	2	2	2	2	2	3
CO4	3	3	3	2	2	1	2	2	3
CO5	3	3	3	2	2	2	2	2	3
CO6	3	2	2	2	2	1	2	2	3

WOWLEDG

Sr.	Name	Designation	Institute/Organisation		
No					
1	Mr. A.G. Joshi	Lecturer in Mechanical	Govt. Polytechnic, Ahmednagar		
		Engineering			
2	Mr. Mahesh Mahadik	Sr. Project Engineer	Atlas Copco India Ltd		
3	Mr. Amol S. Dhawade	Lecturer in Mechanical	Indira Gandhi Polytechnic		
		Engineering	Belwandi(Sugar).Ahmadnagar		
4	Mr. Vaibhav Patil	MEO Class IV, Marine	Sea World Management Ltd. Monaco		
		Engineering Officer	Italy.		
5	Mr. E.C.Dhembare	Lecturer in Mechanical	Govt. Polytechnic, Mumbai		
		Engineering	G		
6	Mr. Y.B.Jamnik	Lecturer in Mechanical	Govt. Polytechnic, Mumbai		
	S	Engineering	ME		

Industry Consultation Committee:

Coordinator,	Head of Department
Curriculum Development,	Department of Mechanical Engineering
Department of Mechanical Engineering	- Willow

STD.

I/C, Curriculum Development Cell

Principal

1960

Program	Programme : Diploma in Mechanical Engineering (Sandwich Pattern)									
Course	Code:	ME192	206	Course Ti	tle: The	ory of M	achines	5		
Compul	Compulsory / Optional: Compulsory									
Teaching Scheme and Credits						Exam	ination	Scheme		
L	Р	TU	Total	TH (2Hrs. 30 min)	TS1 (1 Hr)	TS2 (1Hr)	PR	OR	TW	Total
3	2	-	5	60	20	20	-	-	25	125

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination Note: For Minimum passing marks under various heads, refer, examination rule AR 26. Two practical skill test are to be conducted. First skill test at mid term and second skill test at the end of the term

Rationale: In industries, the Mechanical Engineers/Technicians are supposed to manage functioning of equipment with proper planning, operation and maintenance of equipment. Such a functional requirement needs knowledge and skills of various motion and force transforming mechanisms and devices, such as four bar mechanism, belt pulley, clutches, flywheel, etc. This course is included in the curriculum to provide such necessary knowledge and skills in the area of mechanical equipment and devices to help in understanding of kinematics & dynamics of different equipment being used in industry. Thus, it is a key course for Mechanical Engineers/Technicians to develop following skills: i. Draw inversions and determine velocity and acceleration of different mechanisms. ii. Construct different types of cam profile for a given data. iii. Calculate loss of power due to friction in various machine elements. iv. Solve problems on power transmission. v. Construct turning moment diagram. vi. Calculate balancing mass and its position.

Course Outcomes: Student should be able to

CO1	Identify kinematic parameters of machine.
CO2	Explain the kinematic/Geometric relationship of motion parameters
CO3	Explain working of flywheel/governor and balancing of machine elements
CO4	Draw profile of radial cam with knife edge / roller follower
CO5	Calculate power transmission in belt drives
CO6	Explain working of dynamometers and power transmission in cutches/brakes

Course Content Details:

Unit No	Topics / Sub-topics
1	 Fundamentals of Kinematics and Mechanisms 1.1. Definition of Kinematics, Dynamics, statics, Kinetics, Kinematics link, Kinematics pair and its types, 1.2. Constrained motion and its types, Kinematic chain and its types, machine and structure. Mechanism, Degree of freedom. 1.3. Inversions of Kinematic Chain: Four bar chain, Single slider Crank and Double Slider Crank Chain
	Course Outcome: CO1Teaching Hours : 6Marks: 8 (R- 4 U-4, A-0)
2	 Kinematic Analysis of Plane Mechanism: 2.1. Concept of relative velocity and relative acceleration of a point on a link, angular acceleration, inter-relation between linear and angular velocity and acceleration. Drawing of velocity and acceleration diagram of simple Mechanism. 2.2. Determination of velocity and acceleration of point on link by relative method (Excluding Coriolis's component of acceleration). 2.3. Analytical method and Klein's construction to determine velocity and acceleration of different links of single slider crank mechanism. Course Outcome: CO2 Teaching Hours: 8 Marks: 12 (R-2, U-4, A-6)
3	 Flywheel, Governor and balancing 3.1. Flywheel: Flywheel –Concept, function and application of flywheel with the help of turning moment diagram for single cylinder 4-Stroke I.C Engine (no numerical) Coefficient of fluctuation of energy, coefficient of fluctuation of speed and its significance. 3.2. Governors: Types, concept, function and application and Terminology of Governors. Comparison between Flywheel and Governor. 3.3. Balancing: Introduction Static Balancing, Dynamic Balancing. Concept of Balancing, balancing of single revolving mass, Graphical and numerical method for balancing several masses in the same plane. Course Outcome: CO3 Teaching Hours: 8 Marks: 10 (R-2, U-4, A-4)
4	 Cam and Followers 4.1. Concept, definition and application of Cams and followers. 4.2. Classification of Cams and followers Different follower motions and their displacement diagrams like uniform velocity, SHM, uniform acceleration and Retardation. 4.3. Drawing of profile of radial cam with knife edge and roller follower with and without offset with reciprocating motion.
	Course Outcome: CO4 Teaching Hours : 7 Marks: 10 (R-4, U-0, A-6) Power Transmission
5	 5.1. Belt Drives- flat belt, V-belt & its applications, material for flat and V-belt. Selection of belts, angle of lap belt length Slip and creep. Determination of velocity ratio, of tight side and slack side tension, centrifugal tension and initial tension, condition for maximum power transmission (Simple numerical). 5.2. Chain Drives- Types of chains and sprockets, velocity ratio. Advantages & Disadvantages of chain drive over other drives. Selection of Chain & Sprocket wheels methods of lubrication

Unit No	Topics / Sub-topics									
	5.3. Gear Drives – Spur gear terminology, types of gear trains and Law of gearing.									
	Course Outcome:CO5Teaching Hours: 8Marks:10 (R-4 , U-0 , A-6)									
	Friction Bearing & Clutches, Brakes and Dynamometer									
6	 6.1. Definition of friction, its necessity, Laws of friction, Friction between dry surfaces, coefficient of friction. Pivot and collar friction, uniform pressure and uniform wear assumptions, power absorbed in flat, and conical pivot bearings. Study of single plate, multiple plate, cone and centrifugal clutch. Simple numerical on power transmitted by them. 6.2. Definition Classification and comparison between brakes and dynamometers. Construction and working of Block brake, Band brake, Combined block and band brake, Internality expanding shoe brake and disc brake. (Numerical to find braking force and braking torque and power for block, band and block and band brake). 									
	6.3. Construction and working of Rope brake dynamometer, Hydraulic dynamometer and Belt type transmission dynamometer.									
	Course Outcome: CO6 Teaching Hours : 8 Marks: 10 (R-2, U-4, A-4)									

Suggested Specifications Table (Theory):

Unit	5 3555	Distribution of Theory Marks					
No	Topic Title	R Level	U Level	A Level	Total Marks		
1	Fundamentals of Kinematics and Mechanisms	4	4	0	08		
2	Kinematic Analysis of Plane Mechanism	2	4	6	12		
3	Flywheel, Governor and balancing	2	4	4	10		
4	Cam and Followers	4	0	6	10		
5	Power Transmission	4	0	6	10		
6	Friction Bearing & Clutches, Brakes and Dynamometer	2	4	4	10		
	Total	18	16	26	60		

List of experiments:

Sr.	Ûnit	COs	Title of the Experiments	Hours
No.	No			
1	1	CO1	Describe working of mechanisms and their inversions.	02
2	1	CO1	Mini project : Prepare any two models of mechanisms or inversions.	04
3	2	CO2	Determine and draw velocity and acceleration diagram using relative velocity method for any four problems.	04
4	2	CO2	Draw Klein's Construction for Single slider mechanism.	04

Page **3**

Sr.	Unit	COs	Title of the Experiments	Hours
No.	No			
5	3	CO3	Determine analytically and graphically balancing of several masses rotating in a single plane (Minimum two problems).	04
6	4	CO4	Draw two cam profiles on drawing sheets for the problems having without offset.	04
7	4	CO4	Draw two cam profiles on drawing sheets for the problems having with offset.	04
8	5 & 6	CO5 CO6	 Mini Project: 1. Compile information from internet related to various mechanisms/elements like piston, crank, connecting rod, cam, clutch, brake, flywheel, governor, or animation of mechanism etc. along with functions of each and prepare presentation. 2. Assignment on nomenclature of Helical Gears and worm and worm wheel 	04
	·	Total	TO ALLEGT	30

References/ Books:

Sr. No.	Title	Author, Publisher, Edition and Year Of publication	ISBN
1	Theory of Machines	R. S. Khurmi and J. K. Gupta, S. Chand and Co. Ltd., 14 th edition, 1976	978-8121-9252-42
2	Theory of Machines	P. L.Ballaney, Khanna Publication, 25 th edition, 1965	978-8174-0912-22
3	Theory of Machines	S.S. Rattan, McGraw Hill India, 5 th edition, July 10, 2019	978-9353-1662-81
4	Theory of Machines	Sadhu Singh, Pearson Education India, 2005	978-8177-5812-70
5	Theory of Machines	Thomson Bevan, Persons Education Ltd, 3 rd edition, 2010	978-8131-7296-56

E-References:

- 1. <u>https://nptel.ac.in/</u>
- 2. <u>https://www.slideshare.net/ahirehemant/theory-of-machine</u>
- 3. <u>https://www.youtube.com/watch?v=jzNik6PEKG8</u>
- 4. <u>https://www.youtube.com/watch?v=MJeRFzs4oRU</u>

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	3	3	3	3	2	2	2	2	2
CO2	2	2	3	3	2	2	3	3	2
CO3	2	2	2	3	2	2	3	3	2
CO4	2	2	2	3	2	2	3	3	2
CO5	2	2	2	2	2	2	3	2	2
CO6	2	2	2	2	2	2	3	2	2

CO Vs PO and CO Vs PSO Mapping

Industry Consultation Committee:

Sr. No	Name	Designation	Institute/Organisation
1	Mr. Saurabh Singh	Scientist/Engineer, Liquid Propulsion System Centre,	I.S.R.O. C/o M/s Godrej & Boyce, Vikhroli , Mumbai 400079
2	Mr. Ratan Udasi	Lead Engineer	John Deere Technology Center India, Hadapsar, Pune 411013
3	Mr. Shrikant S. Kulkarni	Senior Divisional Manager (Retd.)	Micro supreme Auto Industry Pvt limited, Opp Shatrunjay temple, Katraj Kondhwa Road, Kondhwa(BK),, Pune, Maharashtra 411048
4	Mr. Avinash S. Sangvikar,	Sr. Lecturer in Mechanical Engineering	Government Polytechnic Thane, Mumbra, Thane 400612
5	Dr. Pradip P. Patil, ,	Assistant Professor	SIES Graduate School of Technology, Nerul, Navi Mumbai, 400 706.
6	Dr. Sunil B. Mahagaonkar	Sr. Lecturer in Mechanical Engineering Department	Government Polytechnic Mumbai, Bandra East, Mumbai, 400051
7	Dr. Avinash A. Lonkar	Sr. Lecturer in Mechanical Engineering Department	Government Polytechnic Mumbai, Bandra East, Mumbai, 400051

Coordinator,

Curriculum Development,

Department of Mechanical Engineering

Head of Department

Department of Mechanical Engineering

I/C, Curriculum Development Cell

Program	Programme : Diploma in Mechanical Engineering (Sandwich Pattern)									
Course Code: ME19301				Course Tit	ile: Mac Dra	chine Dra fting	awing & (Compute	r Aided	
Compul	Compulsory / Optional: Compulsory									
Teaching Scheme and Credits						Exami	nation Sch	neme		
L	Р	TU	Total	TH (2Hrs 30 min)	TS1 (1 Hr)	TS2 (1Hr)	PR	OR	TW	Total
-	4	-	4	-	-	-	25*		25	50

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination Note: For Minimum passing marks under various heads, refer, examination rule AR 26. Two practical skill test are to be conducted. First skill test at mid-term and second skill test at the end of the term.

Rationale:

A Mechanical Engineer, irrespective of their field of operation in an industry, is expected to possess a thorough understanding of drawing, which includes clear visualization of objects and the proficiency in reading and interpreting a wide variety of production drawings. Besides, they are also expected to possess certain degree of drafting skills depending upon job function, to perform day to day activity i.e. communicating and discussing ideas with supervisors and passing on instructions to subordinates unambiguously.

3 A # # 5

In the engineering world, CAD is revolutionized modern day engineering and widely used to design and develop products to be used by consumers. CAD allows for the easier development of products and product management integration. CAD drawings offer the flexibility to draft and design in a digital sphere, which were previously done by hand. The digital format makes data handling easier, safer, and quicker. Prior hand drawn blueprints can be scanned and then can be expanded upon digitally. Many CAD programs are now using three-dimensional drawings to maximize productivity and provide quicker, better product results, allowing for the development of the tiniest details. CAD's excellent ability for comprehensive documentation and communication allows for an easier product management environment.

Course Outcomes: Student should be able to

CO1	Apply appropriate limits, fits, tolerances & surface finish on drawing.
CO2	Use standard conventions of mechanical elements as per SP-46(1988).
CO3	Interpret & Draw production drawings of components/parts for a given assembly.
CO4	Visualize details of components and draw assembly of components.
CO5	Draw 2-D drawings, assembly drawings using layers, and Print/Publish the drawings.
CO6	Create Isometric, 3-D drawings of mechanical components & Print /Publish the drawings

Course Content Details:

No	Topics / Sub-topics
	Limits, Fits and Tolerances
1	 1.1 Introduction to ISO system of tolerancing, dimensional tolerances, elements of interchangeable system, hole & shaft basis system, limits, fits & allowances. Selection of fit. (Simple Numerical) 1.2 Geometrical tolerances, tolerances of form and position and its geometric representation. 1.3 Characteristics of surface roughness - Indication of machining symbol showing direction of lay, roughness grades, machining allowances, manufacturing methods. Course Outcome: CO1
	Production Drawing Basics
2	 2.1 Conventional Representations using SP – 46 (1988) 2.1.1 Materials C.I., M.S., Brass, Bronze, Aluminum, wood, Glass, Concrete and Rubber 2.1.2 Long and short break in pipe, rod and shaft. 2.1.3 Ball and Roller bearing, pipe joints, cocks, valves, internal / external threads. 2.1.4 Various sections- Half, removed, revolved, offset, partial and aligned sections. 2.1.5 Knurling, serrated shafts, splined shafts, and chain wheels. 2.1.6 Springs with square and flat ends, Gears, sprocket wheel 2.1.7 Countersunk & counter bore. 2.1.8 Tapers 2.2 Welded Joints: Representation of the following weld & preparing working drawing showing the size of weld, weld length, flush finish etc. Fillet 2.2.1 Square butt 2.2.2 Single and double U 2.2.3 Single and double U 2.2.5 Bevel butt 2.2.6 Edge / seam / bead 2.7 Spot weld 2.2.8 All round weld 2.2.9 Flush finish weld
	Course Outcome: CO2
3	 3.1 Various Software's for Computer Aided Drafting: 3.2 CAD initial settings commands. 3.3 Object Selection methods Course Outcome: CO3
4	 Basic Commands in CAD 4.1 Zoom and formatting Commands: 4.1.1 Zoom Commands – all, previous, out, in, extent, realtime, dynamic, window, pan. 4.1.2 Formatting commands - Layers, block, linetype, lineweight, color. 4.2 Draw and Enquiry commands: 4.2.1 Draw Command - Line, arc, circle, rectangle, polygon, ellipse, point, spline, block, hatch etc. 4.2.2 Enquiry commands - distance, area, volume, and list command. 4.3 Edit and Modify commands: 4.3.1 Modify Command - Erase, break, trim, copy, move, mirror, offset, fillet, chamfer, array, extend, rotate, scale, lengthen, stretch, measure, divide, explode, align, join, spline edit Commands

Page Z

	4.4 Dimensioning Text and Plot Commands:
	4.4.1 Dimensioning commands - Dimension styles, Dimensional Tolerances and Geometrical
	Tolerances, ddedit.
	4.4.2 Text commands – Text style, dtext, mtext command.
	4.4.3 Plotting & Publishing a drawing – creating standard template, title block, creating table, Bill
	plot Commands.
	4.5 Drawing the given Sketches & Production Drawing of machine components.
	Course Outcome: CO4
	Assembly drawing
	5.1 Assembly to Details: Introduction - basic principles of dismantling process. Preparation of
	detailed working drawing from given assembly, indicating proper type of fit & tolerance relevant to
	that fit and the grade of surface finish required. The drawing to be self-explanatory for manufacturing
	of the components.
	The objects may be selected from the following & not containing more than 8 parts:
	5.1.1. Lathe Tail Stock
	5.1.7 Ligs & Fixtures
	5.1.3 Piston & connecting rod assembly
	5.1.4 Gland and Stuffing box Assembly
	5.1.5 Valves: Steam Stop Valve & Non – Return Valve
5	5.1.6 Fast & loose pulley
	5.2 Details to Assembly: Preparation of the assembly drawings from the given detailed drawings of
	the parts of machine unit. Objects may be selected from the following & not containing more than 8
	parts.
	5.2.1 Couplings – Universal couplings & Oldham's Coupling
	5.2.2 Bearing – Foot Step Bearing & Pedestal Bearing
	5.2.5 Latine tool Post, Tall stock
	5.2.5 Screw Jack
	5.2.5 Serew Jack
	5.2.0 Sigs and Fixtures
	Course Outcome: CO5
	Isometric and 3D Drawings:
	6.1 Drawing of Isometric Views from orthographic views of objects using CAD.
6	6.2 Drawing of 3D (pictorial) objects from the Two/Three views of the objects using CAD.
	Course Outcome: CO6

List of experiments:

Sr.	Unit	COs	Title of the Experiments	Hrs
No.	No			
1	3	CO1	Assignment on Limit, Fit, Tolerances and Machining Symbols in sketch book	02
2	4	CO2	Assignment on Conventional Representation as per SP – 46 (1988) in sketch book	02
3	4	CO2	Assignment on welded joints in sketch book	02
4	4	CO3	Assignment on Redraw Figures & Isometric View in sketch book (Minimum 4 problems each)	02
5	1	CO3	Assignment on Assembly to Details in sketch book (Minimum 2 problems)	06
6	2	CO4	Assignment on Details to Assembly in sketch book (Minimum 2 problems)	06

(Approved Copy)

Sr.	Unit	COs	Title of the Experiments	Hrs
No.	No			
7	2	CO3	Generation of production drawings of the machine parts and assembly with appropriate tolerances using layer, blocks & dimensions in CAD.	08
8	3	CO5	Draw Assembly of machine components with layer, blocks & dimensions in CAD. (Minimum 2 problems).	08
9	4	CO5	Draw Detail of assembly of machine components with layer, blocks & dimensions in CAD. (Minimum 2 problems).	08
10	5	CO6	Draw Isometric drawing in CAD. (Minimum 08 objects)	08
11	4	CO6	Draw 3D drawings in CAD. (Minimum 06 objects),	08
			Total	60

References/ Books:

Sr. No	Title	Author, Publisher, Edition and Year Of publication	ISBN
1	Machine Drawing	N. D. Bhatt, Charotar Publishing House, 50 th edition, 2016	978-9385-0392-32
2	Production Drawing	L. K. Narayanan, P. Kannaich, K. Venkat Reddy, New Age International Publication, 3 rd edition, 2006	978-8122-4251-85
3	Machine Drawing	N Sidheswar, P Kannaiah &V V S Sastry, Tata McGraw Hill Education Pvt. Ltd., 2010	978-0074-6033-76
4	Machine Drawing	N. D.Junnarkar, Pearson, 2006.	978-8131-7067-87
5	IS Code SP 46 (2003)	Code of practice for general engineering drawing, Engineering Drawing Practice for School and colleges, Bureau of Indian Standards, 9 Bahadur Shah Zafar Marg, New Delhi 110002	81-7061-019-2
6	AutoCAD: A Problem-Solving Approach	Sham Tickoo, Delmar Cengage Learning (31 January 1998)	978-0766-8012-95
7	Machine Drawing with AutoCAD	Gautam Purohit & Gautam Ghosh, Pearson Publication	978-1299-4461-82
8	Mastering AutoCAD and AutoCAD LT 2018	George Omura, BPB Publication	978-1119-3867-97

E-References:

- 1. <u>http://www.we-r-here.com/cad/tutorials/index.htm</u>
- 2. <u>http://www.cadtutor.net/tutorials/autocad/</u>
- 3. http://www.caddprimer.com/AutoCAD_training_tutorial/AutoCAD_training_lessons.htm
- 4. <u>http://www.autocadmark.com/</u>
- 5. <u>http://www.autocadtutorials.net/</u>
- 6. <u>www.youtube.com</u>

- 7. EKHO Institute presents Professional AutoCAD Training Videos
- 8. Learning AutoCAD 2012 Tutorial DVD Publisher Infinite Skills Inc. Email : <u>directsales@infiniteskills.com</u>

CO Vs PO and CO Vs PSO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	3	2	3	3	2	2	3	3	2
CO2	3	2	3	3	2	2	3	3	2
CO3	3	2	3	3	2	2	3	3	2
CO4	3	2	2	2	2	2	3	3	2
CO5	3	2	3	3	2	2	3	3	2
CO6	3	2	3	3	2	2	3	3	2

Industry Consultation Committee:

Sr	Nama	Designation	Institute/Organisation
No	Name	Designation	Institute/Organisation
1	Mr. Deepak Parate	Manager - VSRC	FCA Engg India Private Limited, Giga Space IT Park Delta- 1, 4th floor, Office -401 (A & B) Viman nagar Pune 411014
2	Mr. Ratan Udasi	Lead Engineer	John Deere Technology Center India, Cybercity, Magarpatta City, Hadapsar, Pune 411013
3	Mangesh S Mohan	Principal	Agnel Technical College, Bandra west Mumbai 400050
4	Mr.Onkar V Potadar	Assistant Professor	SIES Graduate School of Technology, Sri Chandrasekarendra Saraswati Vidyapuram, Plot 1C-E, Sector V, Nerul, Navi Mumbai – 400 706.
5	Dr. Avinash A Lonkar	Sr. Lecturer in Mechanical Engineering	Government Polytechnic Mumbai, 49, Ali Yavar Jung Marg, Kherwadi, Bandra East, Mumbai, Maharashtra 400051
6	Dr Sunil B Mahagaonkar	Sr. Lecturer in Mechanical Engineering	Government Polytechnic Mumbai, 49, Ali Yavar Jung Marg, Kherwadi, Bandra East, Mumbai, Maharashtra 400051

Coordinator,	Head of Department
Curriculum Development,	Department of Mechanical Engineering
Department of Mechanical Engineering _	

 $Page \mathbf{5}$

I/C, Curriculum Development Cell

Principal

Program	Programme: Diploma in Mechanical Engineering (Sandwich Pattern)									
Course	Code: N	AE1920)7	Course T	itle: Flui	d Mecha	inics and	Machiner	у	
Compul	Compulsory / Optional: Compulsory									
Teaching Scheme and Credits						Exa	mination	Scheme		
L	Р	TU	Total	TH (2 Hrs 30 min)	TS1 (1 Hr)	TS2 (1Hr)	PR	OR	TW	Total
2	2		4	60	20	20			25	125

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination Note: For Minimum passing marks under various heads, refer, examination rule AR26. Two practical skill test are to be conducted. First skill test at midterm and second skill test at the end of the term

Rationale:

Hydraulic machines have important role in water supply, irrigation, power generation and in most of the engineering segments. Knowledge of fluid properties, fluid flow and fluid machinery is essential in all fields of engineering. This course is intended to develop the skills to estimate loss in pipes, efficiency of hydraulic machines like turbines, pump etc., head on a pump and select a pump for a particular application. Diagnose and rectify the faults in pumps and turbines, replace the pressure gauges and other accessories on hydraulic machines and apply their knowledge in hydraulics to select appropriate devices like pressure gauge, valves, flow devices, pipes etc. for different field applications.

Course Outcomes: Student should be able to

CO1	Use manometers and Bourdon gauge to measure pressure.
CO2	Use flow meters to measure the rate of flow.
CO3	Analyze flow through pipes.
CO4	Analyze impact of jet on various types of vanes for optimum efficiency.
CO5	Analyze performance of hydraulic turbine
CO6	Analyze performance of hydraulic pump

Course Content Details:

Unit No	Topics / Sub-topics					
1	 Properties of Fluid and Fluid 1.1. Properties of Fluid: I Kinematic viscosity, 1.2. Fluid Pressure and P intensity, Concept of pressure, Simple and pressure, Center of p 	id Pressure Density, Specific Gravity, Spec Surface tension, Capillarity, V ressure Measurement: Fluid pr f absolute vacuum, Gauge press d differential manometers, Bour pressure (Horizontal, Vertical, I	rific volume, Dynamic Viscosity, Vapor pressure, Compressibility. essure, Pressure head, Pressure sure, Atmospheric pressure, Absolute rdon's tube pressure gauge. Total nclined surfaces).			
	Course Outcome: CO1	Teaching Hours: 05	Marks: 08 (R- 02, U-04, A-02)			

2	 Fluid Flow. 2.1. Types of fluid flow: Laminar, Turbulent, Steady, Unsteady, Uniform, Non uniform, Rotational, Irrotational, One, Two, Three dimensional. 2.2. Continuity equation. Bernoulli's Theorem 2.3. Venturimeter – Construction, Principle of working, Coefficient of discharge, Derivation of discharge through Venturimeter. 2.4. Orifice meter - Construction, Principle of working, Hydraulic coefficients for orifice, Derivation for discharge through orifice meter 2.5. Pitot tube- Construction, Principle of working.
	Course Outcome. CO2 Teaching Hours. 05 Warks. 10 (R-02, 0- 04, A-04)
3	 Flows Through Pipes. 3.1. Laws of fluid friction. Darcy's equation & Chezy's equation for loss of head due to friction. 3.2. Minor losses in pipe fittings and valves 3.3. Hydraulic gradient line and Total energy line. 3.4. Hydraulic power transmission through pipes 3.5. Water hammer phenomenon in pipes, causes and remedial action
	Course Outcome: CO3 Teaching Hours: 04 Marks: 10(R-02, U- 04, A-04)
4	 Impact of Jets 4.1. Impact of jet on fixed Vertical, moving Vertical flat plates. 4.2. Impact of jet on curved Vanes.
5	 Hydraulic Turbines 5.1. Layout & features of hydroelectric power plant. 5.2. Classification of hydraulic turbines. 5.3. Construction & working principle of Pelton wheel Turbine, Francis Turbine, Kaplan Turbine. 5.4. Draft tubes- types and construction, Concept of cavitations in turbine 5.5. Calculation of work done & power efficiency of turbine.
	Course Outcome: CO5 Teaching Hours: 07 Marks: 13(R-04, U- 06, A-03)
6	 Hydraulic Pumps 6.1. Centrifugal pumps: Construction, Principle of working, Methods of priming & Cavitation. Types of casing & impellers. Manometric head, Work done, manometric efficiency, mechanical efficiency, Overall efficiency. Velocity diagrams, NPSH. Priming and its importance. 6.2. Reciprocating pumps: Construction, working principles & applications of single & double acting reciprocating pumps, Concept of slip, negative slip. Cavitation and separation. Use of
	air vessel. Criteria for pump selection

Suggested Specifications Table (Theory):

Unit		Distri	oution of Theory Marks			
No	Topic Title	R Level	U Level	A Level	Total Marks	
1	Fluid pressure & its measurement	02	04	02	08	
2	Fluid flow	02	04	04	10	
3	Flows through pipes	02	04	04	10	
4	Impact of jets	-	02	04	06	
5	Hydraulic turbines	04	06	03	13	
6	Hydraulic pump	04	06	03	13	
	Total	14	26	20	60	

List of experiments:

Sr.	Unit	COs	Title of the Experiments	Hours
No.	No		G AND THE	
1	1	CO1	Use Bourdons pressure gauge and U tube manometer to measure water pressure and discharge of water using measuring tank and stop watch.	02
2	2	CO2	Verification of Bernoulli's theorem	04
3	2	CO2	Use Venturimeter to measure discharge through a pipe.	02
4	2	CO2	Determination of coefficient of discharge for flow through orifice.	02
5	3	CO3	Determine Darcy's friction factor 'f' in pipes of different diameters.	02
6	3	CO3	Determine frictional losses in sudden expansion, sudden contraction, bend and elbow in pipes	04
7	4	CO4	Assignment on impact of jet	02
8	5	CO5	Determine overall efficiency of Pelton Wheel	04
9	5	CO5	Trial on Francis turbine to determine overall efficiency.	04
10	6	CO6	Determine overall efficiency of Centrifugal Pump	02
11	6	CO6	Determine overall efficiency of Reciprocating Pump.	02
		Total		30

References/ Books:

Sr.	Title	Author, Publisher, Edition and	ISBN
No.		Year Of publication	
1	Hydraulics and Fluid	Modi P. N. Seth S. M. Standard	978-8189-4012-69
	Mechanics including	Book House New Delhi, 22nd	
	Hydraulic Machines	Ed., 2013	
2	Fluid Mechanics and	Bansal R. K.	978-8131-8081-53
	Hydraulic Machine	Laxmi Publication Pvt. Ltd. New Delhi, 22nd Ed., 2018	
3	A textbook of Fluid Mechanics	Rajput R. K.	978-9385-4013-74
	and Hydraulic Machines	S Chand and Company Pvt. Ltd.	
		New Delhi, 6 th Ed., 2016	
4	Fluid Mechanics and	Subramanya K.	978-0070-6998-09
	Hydraulic Machines problems	Tata McGraw Hill Co Ltd New	
	and solution	Delhi, 4 th Ed., 2011	
5	Introduction to Fluid	Som S. K. Biswas G	978-0071-3291-94
	Mechanics and Fluid Machines	Tata McGraw Hill Co Ltd	
	2	New Delhi, 3 rd Ed., 2005	
6	A textbook of Hydraulics,	Khurmi R. S.	978-8121-9016-28
	Fluid Mechanics and	S Chand and Company Pvt. Ltd.	
	Hydraulic Machines	New Delhi, 9 th Ed., 2015	
7	Hydraulics, Fluid Mechanics	Ramamrutham S.	978-9384-3782-71
	and Hydraulic Machines	Dhanpat Rai and Sons	
		New Delhi, 9 th Ed., 2011	
8	Hydraulic Machines	Jagdish Lal Metropolitan 3 rd Ed.,	978-8120-0042-21
		2008	

OWLEDG

E-References:

- 1. <u>www.nptel.ac.in/courses</u>
- 2. <u>www.learnerstv.com</u>
- 3. <u>www.ni.com/multisim</u>

CO Vs PO and CO Vs PSO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	2	3	2	2	2	2	3	3	2
CO2	2	3	3	3	2	2	3	2	2
CO3	3	2	3	2	2	2	3	2	2
CO4	2	3	2	2	2	2	2	3	2
CO5	3	3	2	3	2	2	3	3	2
CO6	2	3	3	3	2	2	2	3	2

Sr.	Name	Designation	Institute/Organisation
No			
1	Mr. Prashant Chavan	Lecturer in Mechanical Engineering	Government Polytechnic
			Nanded
2	Mr. Atul Pawar	Lecturer in Mechanical Engineering	VIVA College of Diploma
			Engineering & Technology,
			Virar
3	Mr. Amit Khatale	Team Leader	Tata Technologies Pune
4	Mr. Tushar Mestry	Deputy Manager Production	Jurchen Technology India Pvt
			LTD, Boiser
5	Mr. K. Z. Dhangare	Lecturer in Mechanical Engineering	Government Polytechnic
			Mumbai
6	Miss. A. R. Hagawane	Lecturer in Mechanical Engineering	Government Polytechnic
			Mumbai
		2 PULITED	

Coordinator,

Head of Department

Department of Mechanical Engineering

Curriculum Development,

Department of Mechanical Engineering

I/C, Curriculum Development Cell

1960

Principal

0

KNOWLEDG

GOVERNMENT POLYTECHNIC MUMBAI

(Academically Autonomous Institute of Government of Maharashtra)

Department of Mechanical Engineering P19 Curriculum Fourth Semester

GOVERNMENT POLYTECHNIC MUMBAI

(Academically Autonomous Institute, Government of Maharashtra)

Teaching and Examination Scheme (P19)

With effect from AY 2019-20

Programme: Diploma in Mechanical Engineering (Sandwich Pattern)

Term / Semester -IV

C		Tea	aching H	Hours/ Hours	Contact			Ex	aminati	on Sche	eme (M	arks)	
Course	Course Title					Credits	Theory						
Code		L P TU Total			TH	TS1	TS2	PR	OR	TW	Total		
ME19309	MATERIALS TECHNOLOGY	3	2	1.2.2	5	5	60	20	20	25*		25	150
ME19402 ME19403 ME19404	Optional Course-I <i>(Select any One)</i> AUTOMOBILE ENGINEERING MATHEMATICS FOR MECHANICAL ENGINEERS NON CONVENTIONAL ENERGY RESOURCES	3	2		3/5	5	60	20	20			25	125
ME19304	POWER ENGINEERING AND REFRIGERATION & AIR CONDITIONING		2	P	5	5	60	20	20			25	125
ME19306	ADVANCED MANUFACTURING PROCESSES		2	Ŧ	5	5	60	20	20	25*		25	150
ME19307	PRODUCTION AND INDUSTRIAL ENGINEERING	3	2		5	5	60	20	20			25	125
ME19312	BASICS OF MECHATRONICS	3	2		5	5	60	20	20			25	125
ME19101	ENGLISH	1	5#		5	5							
	Total	18	17		35	35	360	120	120	50		150	800
	Total Contact Hours				35								

 Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment)

 * Indicates assessment by External Examiner else internal practical skill test, #indicates self, on- line learning Mode, @ indicates on line examination

 Note:
 Duration of Examination--TS1&TS2 -1 hour, TH- 2 hours 30 min, PR/OR – 3 hours per batch, SCA- Library -1 hour, Sports- 2hours, Creative Activity-2 hours

indicates Self, on- line learning Mode through MOOCs/Spoken Tutorials /NPTEL/SWAYAM/FOSSEE etc.

Department Coordinator, Curriculum Development, Dept. of Mechanical Engineering Head of Department Dept. of Mechanical Engineering In-Charge Curriculum Development Cell Principal

Program	Programme : Diploma in Mechanical Engineering (Sandwich Pattern)									
Course Code: ME19309 Course Title					itle: Mat	erials Te	echnology	7		
Compul	Compulsory / Optional: Compulsory									
Teachin	Teaching Scheme and Credits Examination Scheme									
L	Р	TU	Total	TH (2 Hrs 30 min)	TS1 (1 Hr)	TS2 (1Hr)	PR	OR	TW	Total
3	2	-	5	60	20	20	25*	-	25	150

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination Note: For Minimum passing marks under various heads, refer, examination rule AR 26. Two practical skill test are to be conducted. First skill test at mid term and second skill test at the end of the term

Rationale:

Engineering industry consumes variety of engineering materials, metals as well as non-metals. Mechanical Engineering Technicians require to know the understanding of various materials with respect to their structure, properties and behavior. While working in different domains of Mechanical Engineering, technicians shall possess the competence to select appropriate materials for required application from the array of conventional ferrous and non- ferrous materials as well the advanced materials, productively.

In this context, the mechanical engineering diploma student must be well versed with steels, cast irons, nonferrous materials, composites and other advanced materials. Also the student is required to have hands- on learning experience on some destructive and non-destructive testing methods.

Hence it is apt to study this course with the objective to develop the competency of selection of appropriate material for required applications and material testing

Course Outcomes: Student should be able to

	the second se
CO1	Apply basics of material crystal structures and mechanical properties of materials for
	required applications in material selection and perform optical metallography.
CO2	Interpret Iron and Iron Carbide Equilibrium Diagram and correlate microstructure of steels
	and cast irons with it
CO3	Describe characteristics of composite materials, and other advanced materials and select
	them for appropriate applications
CO4	Interpret characteristics, compositions and microstructures of non-ferrous materials and
	Identify ceramics for their proper selection for applications
CO5	Compare, select and perform various heat treatments on steels and CI
CO6	Describe and perform destructive, non-destructive tests on materials

Course Content Details:

Unit No	Topics / Sub-topics
110	Materials Structures, Mechanical Properties and Metallography
1	 1.1 Classification of engineering materials, Mechanical properties of materials and their importance in material selection, crystal structures, unit cells, crystal parameters Average number of atoms, atomic packing factors for SC, BCC, FCC and HCP crystal cells, Theoretical Density Calculation, defects in crystal structures & their significance 1.2 *Metallography: Procedure of metallographic sample preparation for optical microscopy, etchants and etching action for two phase alloys, Principle of optical metallurgical microscope, its parts, magnification, concept of grain, grain boundary. [*This subtopic shall be taught in Lab] Course Outcome: CO1
	Course Outcome: CO1 reaching Hours:05 Warks: 08 (K-2, U-3, A-3)
	 2.1 Basic terminology: Definitions: Equilibrium diagram, phases, variables, components of equilibrium diagram, solid solution, types of solid solutions, alloys, Lever rule, Iron- Iron Carbide Equilibrium Diagram with details of phases, critical temperatures, Invariable metallurgical reactions
	2.2 Plain Carbon Steels: Classification of steels based on carbon contents, their Cooling,
2	2.3 Specifications of steels: IS AISL EN systems
	2.4 Cast Irons: Comparison of steels and cast irons. Classification of Cast Irons and form of carbon
	into them, factors influencing microstructures of cast irons, white cast irons, malleable cast iron,
	grey cast iron, nodular cast iron, Compacted Graphite Cast Iron, ADI, properties and applications
	of these cast irons
	Course Outcome: CO2Teaching Hours: 09Marks: 12 (R-2, U-4, A-6)
	Alloy Steels & Advanced Materials
3	 3.1 Need of alloy steels, Limitations of Plain Carbon Steels, effects of alloying elements 3.2 Maraging steel, HSLA steel, creep resistant steel, High temperature alloys, Low expansion steels 3.3 HSS- types & composition, Stainless steels: Types, composition and applications 3.4 Advanced Materials: Composite Materials- Definition, Need & advantages, Classification, PMC, MMC, CMC, nano composites, constituents, rue of mixture and applications, Processing of composites, Concept and behavior and applications of Shape Memory Alloys & Self-healing materials
	Course Outcome: CO3 Teaching Hours:08 Marks:12 (R-2, U-4, A-6)
	Nonferrous Materials & Ceramics
	4.1 Need of nonferrous materials, Properties, compositions and applications of Copper and its alloys:
	Cartridge brass, Muntz metal, season cracking of brasses, Aluminium bronze, Tin bronze, silicon
1	4.2 Aluminium & its allows: Properties, compositions and applications, LM5, LM6, LM14
4	4.3 Lead and Tin based sliding bearing materials (Babbits)
	4.4 Ceramic Materials: Types and Applications of ceramics- Glass, Glass ceramics, Refractories,
	Abrasives, Advanced ceramics
	Course Outcome: CO4Teaching Hours:06Marks:08 (R-2, U-3, A-3)
5	Heat Treatments5.1 Objectives of heat treatments, cooling media, cooling stages, Martensitic transformation, retained austenite, its effects,

 ${\tt Page}2$

	5.2 Heat Treatment Processes: An	nnealing: Conventional annealing, i	sothermal annealing, Spherodise								
	annealing, Normalizing, Hardening: Conventional hardening, Martensitic Transformatio Tempering: Objectives, types, Process of tempering, Surface Hardening: Carburising, nitridin Induction hardening, flame hardening, Heat Treatments for Cast Irons, Hardenability, Pollutio										
	& environmental issues related	ed with heat treatments									
	Course Outcome:CO5	Teaching Hours:09	Marks:12 (R-2, U-5, A-5)								
	Testing of Materials										
	6.1 Destructive Testing: Objectives & Procedures of Hardness Measurement: Brinell & Rockwell										
	Method, Objectives & Procedures of Fatigue testing, Objectives & Procedures of wear testing,										
6	creep testing										
U	6.2 Non-Destructive Testing: Objectives, Procedure, advantages and limitations of Dye Penetration										
	Test, Magnetic Particle Test, Ultrasonic Crack Detection Test, Radiography Tests, Eddy										
	current Test										
	Course Outcome: CO6	Teaching Hours:08	Marks:08 (R-2, U-3, A-3)								

Suggested Specifications Table (Theory):

Level of questions: R: Remember, U: Understand, A: Apply

Unit	POLYTECHIN	Distribution of Theory Marks						
No	Topic Title	R Level	U Level	A Level	Total Marks			
1	Materials Structures, Mechanical Properties and Metallography	02	03	03	08			
2	Ferrous Materials	02	04	06	12			
3	Alloy Steels & Advanced Materials	02	04	06	12			
4	Nonferrous Materials & Ceramics	02	03	03	08			
5	Heat Treatments	02	05	05	12			
6	Testing of Materials	02	03	03	08			
	WOWLED GETotal	12	22	26	60			

List of experiments:

Sr.	Ünit	COs	Title of the Experiments	Hours
No.	No			
1	1	CO1	Use of optical metallurgical microscope	2
2	1	CO1	Preparation of Metallographic Sample	4
3	2	CO2	Interpretation of microstructures of various steels	2
4	2	CO2	Interpretation of microstructures of various Cast Irons	2
5	3	CO3	Interpretation of SMA behavior	2
6	4	CO4	Interpretation of microstructures of various nonferrous materials	2
7	5	CO5	Performance of heat treatment on steel sample	4

Page 3

Sr.	Unit	COs	Title of the Experiments	Hours
No.	No			
8	6	CO6	Hardness Measurement by Brinell Hardness Method and	4
			Rockwell Hardness Method	
9	6	CO6	Performance of ultrasonic flaw detection Test	2
10	1-6	CO1-6	Mini Project (Teacher shall allot the task/topic to a group of five students.	4
			to work throughout the semester on mini project)	
11	5	CO5	Evaluation of hardenability of steel by Jominy End Quench Test	2
12	6	CO6	Performance of Dye Penetration Test	2
13	6	CO6	Performance of Magnetic Particles Test	2
14	6	CO6	Performance of creep Test	2
		Total		30

Note: Experiments No. 1 to 10 are compulsory, Minimum 11 experiments shall be performed. Remaining experiments are to be performed as per availability of time.

References/ Books:

Sr.	Title	Author, Publisher, Edition and	ISBN
No.		Year Of publication	
1	Material Science and Metallurgy	Dr. V. D. Kodgire, S.V. Kodgire,	978-8176-3140-08
	for Engineers	Everest Publishing House, 44 th	
		Ed; 2018	
2	Materials Science and	William D Callister Jr, David G	978-1118-3245-78
	Engineering, Introduction	Rethwisch, Wiley, 9th Ed, 2014	
3	Physical Metallurgy for Engineers	Donald S. Clark, Wilbur R.	978-8123-9117-86
	SIN	Varney, CBS Publishers &	
	GE	Distributors, 3 rd Edition, 2004	
4	A Text Book of Materials	S. B. Barve, Vipul Prakashan, 1 st	978-9382-7916-14
	Technology	Ed, 2014	
5	Self-Healing Materials: Principles	George Wypych, Chemtec	978-1927-8852-39
	and Technology	Publishing, 1 st Ed, 2017	

E-References:

- 1. https://depts.washington.edu/matseed/mse_resources/Webpage/Metals/metalstructure.htm
- 2. https://www.kemet.co.uk/blog/metallography/what-is-metallography
- 3. https://web.utk.edu/~prack/MSE%20300/FeC.pdf
- 4. <u>https://www.youtube.com/watch?v=AH3ekqeiyZo</u>
- 5. https://www.youtube.com/watch?v=AH3ekqeiyZo
- 6. <u>https://www.youtube.com/watch?v=fc8zrgYJCJw</u>
- 7. <u>https://www.youtube.com/watch?v=UuHofNW40Yw</u>
- 8. <u>http://users.fs.cvut.cz/libor.benes/vyuka/matscienceii/lectures2017/04_Copper%20and%20c</u> <u>opper%20alloys.pdf</u>
- 9. https://web.itu.edu.tr/~arana/ndt.pdf
- 10. <u>https://www.pmec.ac.in/images/5_Mechanical%20Working%20and%20Testing%20of%20</u> <u>Materials.pdf</u>

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	3	3	3	3	2	3	3	3	3
CO2	3	3	2	3	3	2	3	2	2
CO3	3	2	3	3	2	2	2	3	2
CO4	3	2	2	3	-	2	2	3	2
CO5	3	2	3	3	3	3	2	3	3
CO6	3	2	3	3	3	2	2	3	3

CO Vs PO and CO Vs PSO Mapping

Industry Consultation Committee:

Sr. No	Name	Designation	Institute/Organisation
1	Mr. Avinash Jangle	Senior Engineer	DAKA Monolithics Pvt. Ltd., Thane
2	Mr. Dattatraya B. Jadhav	Head, Melting	Mahindra & Mahindra Ltd, Kandivali
3	Dr. W.S. Rathod	Associate Professor	Veermata Jijabai Technical Institute (VJTI), Mumbai
4	Dr. R.L. Doiphode	Lecturer in Mechanical Engineering	Government Polytechnic, Kolhapur
5	Mr. Amol S. Dhande	Lecturer in Mechanical Engineering	Government Polytechnic, Ratnagiri
6	Shri. U.A. Agnihotri	Lecturer in Mechanical Engineering	Government Polytechnic, Mumbai
7	Dr. V.U.Rathod	Lecturer in Mechanical Engineering	Government Polytechnic, Mumbai

Coordinator, Curriculum Development, Department of Mechanical Engineering

Head of Department

Department of Mechanical Engineering

I/C, Curriculum Development Cell

Principal

Programme : Diploma in Mechanical Engineering (Sandwich Pattern)										
Course Code:ME19402				Course Title: Automobile Engineering						
Compulsory / Optional: Optional										
Teaching Scheme and Credits Examination Scheme										
L	Р	TU	Total	TH (2 Hrs 30 min)	TH (2 Hrs 30 min)TS1 (1Hr)TS2 (1Hr)PRORTWTotal					
3	2		5	60	20	20			25	125

Abbreviations: TH- Theory; PR-Practical; TU-Tutorial; TS1 and TS2- Term Tests; OR-Oral Exam; TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal assessment

Note: For Minimum passing marks under various heads, refer, examination rule AR26.

Rationale:

Automobile sector has been helping the world for the overall development and it has been creating wage and self-employment opportunities both in public and private sectors. Mechanical engineering technologists should have an overall understanding of various aspects of automobile systems.

This course provides knowledge about the different vehicle layout, transmission and controls, electrical and electronics systems, vehicle safety and security, motor vehicle acts along with automobile maintenance. This will help learner to develop employability skills in automobile industry. **Course Outcomes:** Student should be able to

CO1	Prepare vehicle layouts with chassis specification.
CO2	Interpret power flow diagrams of transmission systems.
CO3	Select suitable braking and steering systems for different applications.
CO4	Select tyres and suspension system for different applications
CO5	Describe simple electrical – electronics circuits for automobile systems.
CO6	Describe automobile air conditioning system.

Course Content Details:

Unit No	Topics / Sub-topics							
	Introduction to automobiles							
1	 1.1 Automobile: definition, classification of automobiles, major components of automobiles with their function and location. Basic engine components; Cylinder block; Cylinder head; Gaskets; cylinder liners, types of cylinder liners; Piston and piston pin; piston rings, types of piston rings; Connecting rod; Crank shaft; Cam shaft; Crankcase; Engine valves; Flywheel and Governor. 1.2 Cooling and lubrication system: The necessity of cooling system; Types of cooling system-air cooling and water cooling; Types of water cooling system – Thermosyphon system and pump circulation system; Advantages and disadvantages of air cooling and water cooling systems; The components of water cooling system –fan, radiator, pump and thermostat; The necessity of lubrication system; S.A.E rating of lubrication system; Types of lubrication system; Petrol lubrication and high pressure lubrication system 							

Unit No	Topics / Sub-topics							
	 1.3 Fuel feed system: Conventional fuels and alternative fuels: Cetane and octane numbers; Types of carburetors; Working of simple carburetor; Multi point and single point fuel injection systems; Different fuel transfer pumps; Working of S.U electrical and A.C mechanical pump; Fuel filters; Fuel injection pump; Fuel injectors. 1.4 Functions of chassis, frame and body: Basic body nomenclature 1.5 Alternative fuels: LPG and CNG: need, fuel characteristics, advantages, limitations. Layout of electric vehicles, need, working, advantages, limitations. Hydrogen as fuel 1.6 Recent trends and future developments in Automobiles: Hybrid vehicles, driverless cars. Automatic transmission. 							
	Course Outcome: CO1Teaching Hours:12Marks:16 (R-4, U-8, A-4)Transmission system							
2	 2.1 Need and Requirements of transmission system. Its components and their functions 2.2 Clutch: Function and purpose of clutch, types and construction of clutches such as single plate and multiplate type, Faults & remedies in clutch 2.3 Gearbox: Constant mesh & synchromesh gear box with their construction and operation 2.4 Propeller shaft-construction and functions 2.5 Differential-need, construction and working, differential action and operation 2.6 Axle-Hotchkiss and torque tube drives, rear axle-full floating axle, semi-floating and three quarter floating axle. Front axle. 							
Control Systems								
3	 3.1 Steering System: Purpose, functions & types of steering system. Construction and working of recirculating ball type and rack and pinion type. Wheel Geometry-caster, camber, king pin inclination, Toe In and Toe Out. Power steering (introductory) 3.2 Braking System: Need of braking system, types of automotive braking systems, mechanical, hydraulic and air operated. Hydraulic braking systems: Layout & components of hydraulic braking Systems. Construction and working of master cylinder and wheel cylinder, Tandem cylinder. Drum braking system, Disc Braking Systems, Air braking system: layout and working 							
	Course Outcome: CO3Teaching Hours:08Marks:10(R-4, U-4, A-2)							
	Suspension System, wheel and Tyres							
4	4.1 Suspension System: Necessity and classification of suspension system, front and rear suspension system, construction and working of Wishbone type, Mac Pherson type, Trailing link type, coiled springs, leaf spring and shock absorbers, air suspension system							

Topics / Sub-topics								
4.2 Wheels and Tyres: Types of wheels-spoked, disc, light alloy cast. Types of rims.								
Tyres-Desirable properties, types-redial ply, cross ply, tubeless. Factors affecting								
tyre life.								
Course Outcome:CO4Teaching Hours:06Marks:08 (R-2, U-4, A-2)								
Electrical Systems								
 5.1 Ignition system: Introduction to ignition system; Battery Ignition systems and magneto Ignition system; Electronic Ignition system; Construction and working of lead acid battery; Elements of starting system; Types of lights used in the automobile 5.2 Battery: Automotive battery construction and operation, battery capacity, Battery ratings, Battery tests. Charging System: Need of charging system, Construction and operation of charging system, Dynamo, Alternator principle, construction and working 5.3 Starting System: Need of starting system layout, Bendix and solenoid drive 								
Course Outcome: CO5 Teaching Hours: 06 Marks: 10(R-2, U-4, A-4)								
 6.1 Locate various components of air conditioning systems in a vehicle 6.2 Introduction, layout of car air conditioning system, components of a system, working of a system, parameter control (Humidity, temperature, purity of air) required 6.3 Important precautions while using AC system. 								

Suggested Specifications Table (Theory):

level o	of questions: R: Remember, U: Understand, A:	Apply					
Unit No		Distribution of Theory Marks					
	Topic Title	R Level	U Level	A Level	Total Marks		
1	Introduction to Automobiles	04	08	04	16		
2	Transmission system	02	04	04	10		
3	Control Systems	04	04	02	10		

L

Suspension System, wheel and tyres

Automobile Air conditioning System

Electrical Systems

Total
List of experiments:

Sr. No.	Unit No	COs	Title of the Experiments	Hours
1	1	CO1	To draw vehicle layout. (2 wheeler and 4 wheeler)	4
2	1	CO1	Demonstration of auto transmission in automobiles.	2
3	2	CO2	Dismantle and assemble single plate clutch	2
4	2	CO2	Dismantle and assemble multi plate clutch	2
5	2	CO2	Dismantle and assemble the propeller shaft assembly.	2
6	2	CO2	Dismantle and assemble synchromesh gear box or constant mesh gear box.	2
7	2	CO2	Dismantle and assemble Differential gear box of automobile.	2
8	3	CO3	Dismantle and assemble the power steering system.	2
9	3	CO3	Dismantle brake system (drum /disk) and observe various components of it. Write function of important components.	4
10	4	CO4	Dismantle and assemble leaf spring, torsion bar, dependent & independent suspension.	2
11	4	CO4	Dismantle and assemble the wheel and tyre assembly.	2
12	5	CO5	Testing of battery like Ah rating, type of battery, no. of cells, vents, charge status by using hydrometer and voltmeter.	2
13	6	CO6	Demonstration of car air-conditioning system.	2
			Total	30

References/ Books:

Sr. No.	Title	Author, Publisher, Edition and Year of publication	ISBN
1	A Text book of Automobile Engineering	Rajput R.K, Laxmi Publications Pvt. Ltd, New Delhi, 2 nd Ed, 2017	978-8170-0899-19
2	Automotive Mechanics	Crouse W.H., Anglin D.W; Tata-McGraw Hill Publications, Delhi, 5 th Ed, 2006	978-0070-6343-50
3	Automobile Engineering (vol. I & II)	Dr. Kirpal Singh, Standard Publishers, New Delhi.(2004), 13 th Ed, 2020	978-8180-1419-66 978-8180-1420-82
4	Automobile Engineering	978-0074-6039-01	
5	Automotive Mechanics	978-0070-4949-16	
6	Automobile Engineering	T. R. Banga, Nathu Singh, Khanna publishers, 1 st Ed, 2005	978-8174-0922-12

ESTD. 1960

E-References:

- 1. www.tatamotors.com
- 2. www.marutisuzuki.com
- 3. www.auto.howstuffworks.com

Page4

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	3	3	2	2	1	1	2	1	1
CO2	2	3	2	1	1	1	2	1	1
CO3	2	2	2	2	1	2	1	1	1
CO4	2	2	3	3	3	1	1	1	1
CO5	2	2	2	2	1	2	1	1	1
CO6	2	3	2	1	1	1	2	1	1

CO Vs PO and CO Vs PSO Mapping

Industry Consultation Committee:

Sr.	Name	Designation	Institute/Organisation
INO			
1	Mr. Gopal B. Patil	Senior Engineer	Atul Auto Ltd, Pune
2	Mr. Sagar R. Saymote	Manager Mechanical Design	Induction equipment India Pvt
			Ltd,Bhosari, Pune
3	Mr. A.G. Joshi	Lecturer in Mechanical	Government Polytechnic,
		Engineering	Ahmadnagar
4	Mr. Kiran B Salunke	Lecturer in Mechanical	Government Polytechnic, Thane
	1	Engineering	
5	Mr. E.C.Dhembare	Lecturer in Mechanical	Government Polytechnic,
	19	Engineering	Mumbai
6	Mr. Y.B.Jamnik	Lecturer in Mechanical	Government Polytechnic,
	¥ .	Engineering	Mumbai

Coordinator,

Head of Department

Curriculum Development,

Department of Mechanical Engineering

Department of Mechanical Engineering

I/C, Curriculum Development Cell

Principal

KNOWLEDG

Programme: Diploma in Mechanical Engineering (Sandwich Pattern)										
Course	Code:]	ME194	03	Course Tit	le: Math	nematics	for M	echanical	Enginee	rs
Compulsory / Optional: Optional										
Teaching Scheme and Credits						Exami	nation	Scheme		
L	Р	TU	Total	TH (2Hrs. 30 min)	TS1 (1 Hr)	TS2 (1Hr)	PR	OR	TW	Total
3	2		5	60	20	20			25	125

Abbreviations: TH- Theory; PR-Practical; TU-Tutorial; TS1 and TS2- Term Tests; OR-Oral Exam; TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal assessment Note: For Minimum passing marks under various heads, refer, examination rule AR26.

Rationale:

Engineering problems can effectively expresses in terms of mathematics. Mathematics is a tool to optimize many issues. If students are aware of applications of mathematical techniques, they can analyse the issues and derive optimum solutions. Hence it is apt to learn application oriented study of mathematical techniques.

Many students having analytical approach can develop their skills with this course. The course is designed to make student understand the practical applications of mathematical techniques.

Course Outcomes: Student should be able to

CO1	Solve first order first degree differential equations of various types
CO2	Apply the concept of Cayley-Hamilton theorem to solve various problems.
CO3	Apply Laplace transform to solve differential equation of first order with constant coefficients
CO4	Utilize Basic concepts of probability distribution to solve elementary engineering problems
CO5	Sketch the Curves
CO6	Solve Double and triple integrals

Course Content Details:

Page.

Unit No		Topics / Sub-topics	
1	 Differential Equations Definition of Differenti Order and Degree of Di Formation of Differenti Solution of first order fiequation reducible to va 	al Equation Ifferential Equation ial equation for function conta irst degree differential equatio riable separable form(iii) Hon	uning single constant n-(i) variable separable (ii) nogeneous (iv) Exact (v) linear
	Course Outcome: COI	Teaching Hours: 08	NIARKS : 12 (R-4, U-4, A-4)

Unit No	Topics / Sub-topics						
2	 Matrices Vectors, real field Inner products, Norm, Linear independence, Orthogonality. Characteristic values and vectors, their properties for Hermitian and real symmetric matrices. Characteristic Polynomial Cayley Hamilton theorem Functions of square matrix Minimal polynomial Diagonalizable matrix 						
	Course Outcome: CO2 Teaching Hours: 09 Marks: 12 (R-4, U-4, A-4)						
3	 3. Laplace Transformation 3.2.1 Definition ,Laplace transform of elementary functions 3.2.2 Important properties of Laplace Transform-Linearity property ,first shifting property, second shifting property, change of scale property 3.2.3 Important results-multiplication by tⁿ and division by t (without proof) 3.2.4 Inverse Laplace Transform 3.2.5 Properties of Inverse Laplace transform-Linearity and first shifting Property 3.2.6 Inverse Laplace transform by partial fraction 3.2.7 Application of Laplace transform for solving differential equations of first order with constant coefficients 						
	Course Outcome: CO3 Teaching Hours: 11 Marks: 16 (R-4, U- 4, A-8)						
4	 4. Probability Distribution 4.1 Probability Distribution 4.1.1 Discrete probability Distribution 4.1.2 Continuous probability Distribution 4.2 Basics of statistics and Binomial Distribution 4.3 Poisson Distribution 4.4 Normal Distribution 						
	Course Outcome: CO4 Teaching Hours: 07 Marks: 08 (R- 4, U-2, A-2)						
5	 5. Curve Tracing 5.1 Introduction 5.2 Important Points 5.3 Method of Tracing a Curve 5.4 Standard Curves 5.5 Parametric Equation 5.6 Polar Co-ordinates 5.7 Polar Equations Course Outcome: CO5 Teaching Hours: 06 Marks: 06 (R-2. U-2. A-2) 						
	Double and Triple Integration						
6	 6.1 Introduction to Double Integral 6.2 Evaluation of Double Integral 6.3 To Calculate the Double Integral over a given region 6.4 Introduction to Triple Integral 6.5 Evaluation of Triple Integral 						
	Course Outcome: CO6 Teaching Hours: 4 Marks: 06 (R-2, U-2, A-2)						

Suggested Specifications Table (Theory):

Level of questions: R: Remember, U: Understand, A: Apply

Unit		Distribution of Theory Marks					
No	Topic Title	R	U	A	Total		
		Level	Level	Level	Marks		
1	Differential Equations	4	4	4	12		
2	Matrices	4	4	4	12		
3	Laplace Transformation	4	4	8	16		
4	Probability Distribution	4	2	2	8		
5	Curve Tracing	2	2	2	6		
6	Double and Triple Integration	2	2	2	6		
	Total	20	18	22	60		

List of experiments:

Sr. No.	Unit No	COs	Title of the Experiments	Hours
1	1	CO1	 Assignment on concept of calculus and differentiation: > Use of exact differential for identifying intensive and extensive property in thermodynamics > Use of differentiation in finding condition for maximum efficiency of a characteristic curve. > Application of differentiation in smoothening the curve 	04
2	1	CO1	 Application of first order differential equation to real world systems: First order differential equations used in damping system and vibration of springs Heat transfer problems and Euler's equation Proof of pascals law in fluid mechanics for three dimensional analysis etc. 	04
3	2	CO2	 Assignment on Matrices: Problems on metrics, scalar and vector product Use of stiffness metrics and tensor metrics using vector approach 	04
4	2	CO2	 Application of metrices in security information science: ➤ Use of cryptography and ➤ Encryption process with certain examples 	04
5	3	CO3	Problems on Laplace Transformation and inverse Laplace transform	02
6	3	CO3	Application of Laplace transform to solve the increasing complexity of engineering problems for example its applications which make differential equations easy to solve.	04
7	4	CO4	Assignment on basics of Statics :	04

Sr.	Unit	COs	Title of the Experiments	Hours
No.	No			
			 Collection of data, Comparison of Mean, Median and Mode with certain application, analyzing data, Use and application of statistical charts used in the industries. 	
8	5	CO6 and CO5	 Application of Integration and curve tracing: ➤ To find Torque required to overcome the friction considering uniform wear and pressure condition ➤ To find the work done for Isobaric, Iso thermal and adiabatic process. ➤ To identify and plot different conic sections ➤ Use of MathCad to draw the Polar curves 	04
		Total		30

References/ Books:

Sr. No.	Title	Author, Publisher, Edition and Year Of publication	ISBN
1	Mathematics for Polytechnic Students II	S. P. Deshpande, Pune Vidyavardhini Graha Prakashan, 9 th Ed, 2015	978-8193-4140-88
2	Applied Engineering Mathematics (Volume II)	H.K.Dass, Dr.Rama Verma, S, Chand Publication, 8 th Ed, 2009	978-8121-9316-63
3	Companions to Engineering Maths	G. V. Kumbhojkar, P. Jamunadas LLP, 2 nd Ed, 2017	978-8193-4656-15
4	Applied Mathematics	N.Raghvendra Bhatt, Mohan Singh, Tata McGraw Hill Publication, 1997	978-0074-6044-34
5	Higher Engineering Mathematics	B. S. Grewal, Khanna Publications, 40 th Ed, 2010	978-8174-0919-56

E-References:

Page4

- 1. www.math-magic.com
- 2. <u>www.Scilab.org/-SCI</u> Lab
- 3. www.mathworks.com/Products/Matlab/-MATLAB
- 4. <u>www.wolfram.com/mathematica/-Mathematica</u>
- 5. <u>https://www.khanaacademy.org/math?gclid=CNqHuabCys4CFdoJaAoddHoPig</u>
- **6.** www.dplot.com/-Dplot
- 7. www.allmathcad.com/-Math CAD
- 8. <u>www.easycalculation.com</u>
- 9. <u>https://www.vedantu.com/ncert-solutions/ncert-solutions-class-12-maths</u>
- **10.** MYCBSEGUIDE

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	3	2	2	1	1	1	3	3	1
CO2	3	2	2	1	1	1	3	3	1
CO3	3	2	2	1	1	1	2	3	1
CO4	3	2	2	1	1	1	3	2	1
CO5	3	2	2	1	1	1	3	3	1
CO6	3	2	2	1	1	1	2	3	1

CO Vs PO and CO Vs PSO Mapping

Industry Consultation Committee:

Sr.	Name	Designation	Institute/Organisation
1	Mr. Vinit S. Jawale	Technical Specialist	John Deere Technology Centre India, Pune 411013
2	Mr. Pranshant Anvekar	Sr. Engineer	Innovative Energy Services, Mumbai
3	Smt. Harshita Rakshe	Assistant Professor, Mathematics	Government college of Engineering and Research, Awasari, Dist. Pune
4	Shri.Santosh Bhandekar	Lecturer in Mathematics	Government Polytechnic, Solapur, Akkalkot Road, Shanti Chowk, Solapur- 413006
5	Shri. Abhijit Patil	Lecturer in Mathematics	Government Polytechnic Mumbai, Bandra East, Mumbai, 400051
6	Dr. Avinash Lonkar	Sr. Lecturer in Mechanical Engineering	Government Polytechnic Mumbai, Bandra East, Mumbai, 400051
7	Dr. S. B. Mahagaonkar	Sr. Lecturer in Mechanical Engineering	Government Polytechnic Mumbai, Bandra East, Mumbai, 400051

Coordinator,

Curriculum Development,

Department of Mechanical Engineering

Head of Department Department of Mechanical Engineering

I/C, Curriculum Development Cell

Principal

Program	Programme: Diploma in Mechanical Engineering (Sandwich Pattern)									
Course	Course Code: ME 19404 Course Title: Non-Conventional Energy Resources									
Compul	Compulsory / Optional: Optional									
Teaching Scheme and Credits					Examina	ation Sc	heme			
L	Р	TU	Total	TH (2Hr 30 min)	TS1 (1 Hr)	TS2 (1 Hr)	PR	OR	TW	Total
3	2		5	60	20	20	-		25	125

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination Note: For Minimum passing marks under various heads, refer, examination rule AR26. Two practical skill tests are to be conducted. First skill test at midterm and second skill test at the end of the term

0] A [[] (a

Rational:

The energy has become an important and one of the basic infrastructures for the economic development of the country. It is imperative for the sustained growth of the economy. This course envisages the new and renewable source of energy, available in nature and to expose the students on sources of energy crisis and the alternates available, also stress up on the application of non-conventional energy technologies.

Course Outcomes: At the end of the course student will be able to:

CO1	Describe the Non-Conventional sources of energy.
CO2	Identity & Describe application of Solar energy technology.
CO3	Describe application of solar thermal system.
CO4	Describe application of Wind energy technology.
CO5	Describe Biomass application & its maintenance.
CO 6	Apply principles of energy measurement & conservation.

Course Content Details:

Page

Unit No	Topics / Sub-topics
1	Introduction to Conventional and Non-conventional Energy Resources 1.1 Conventional energy sources 1.1.1 Change-Green House Gases, Global Warming 1.1.2 Sustainable growth. 1.1.3Present Energy Scenario: Global and Indian
	1.3 Need of non conventional energy sources.

Unit No	Topics / Sub-topics								
	 1.4 Renewable Sources of Energy such as Hydro, Solar, Wind, Bio-mass, Tidal and Geothermal – their availability 1.5 Energy Consumption in Household Appliances. 								
	Course Outcome:CO1Teaching Hours:06Marks:10 (R-4, U-4, A-2)								
	Solar Energy Technology								
2	 2.1 Solar Radiation, Sun & Earth, Solar Spectrum, Sun & Earth Movement, Solar Geometry: Concept 2.2 Solar Thermal Applications, Water Heating, Space Heating, Space Cooling and Refrigeration, Power Generation, Distillation 								
	Course Outcome: CO2 Teaching Hours:08 Marks:10 (R-2, U-4, A-4)								
	Solar Thermal System								
3	 3.1 Construction Details containing capacity, size and materials for Solar Flat Plate Collector, Solar Evacuated Flat plate Collector, Solar Concentrating Collector, Solar Cooker-Box and Concentrating Solar Drying 3.2 Solar Photovoltaic Conversions: Principle of working of Solar cell Construction Details containing capacity, size & materials of Solar Photovoltaic System 								
	Course Outcome: CO3 Teaching Hours: 08 Marks:12(R-2, U-4, A-6)								
4	 Wind Energy Technology 4.1 Wind Power, Concepts of Wind Energy Conversion, Lift and Drag, Classification and Description, Components of Power Generating Horizontal Axis Wind Turbine, Site Selection Criteria. 4.2 Hydro-Power Site Selection, Different Components of Small Hydroelectric Projects, Types of Turbine-Francis, Propeller, Classification of Small Hydro-electric Plants: Ultra low head, Low head, Medium/high head, Micro hydro, Mini hydro, Small hydro 4.3 Introduction to Tidal Energy: 4.3.1 Basic principle of tidal power plant. 4.3.2 Components of tidal power plant. 4.3.3 Advantages and Disadvantages Course Outcome: CO4 Teaching Hours: 08 Marks:10 (R-2, U-4, A-4) 								
	Biomass Energy Technology								
5	 5.1 Introduction to biomass and farm residue, management and briquetting 5.2 Bio-gas as a source of energy. Benefits of bio-gas 5.3 Technology of biogas 5.4 Principles, feedstock, types and design of biogas plants 5.5 Comparison of plant designs 5.6 Main parts of biogas plants, digester, gas holder, pressure gauge, gas controlling cocks and meter 5.7 Selection of biogas model and size. Site selection of Plants 5.8 Appliances of biogas plant - burner, heating plate, lamps 								

Page

Unit No	Topics / Sub-topics								
	5.9 Operation, trouble shooting and maintenance of biogas plant								
	5.10 Safety measures in biogas plant. Biomass Gasification, Different types of biomass gasifies.								
	Course Outcome: CO5	Teaching Hours:08	Marks:10(R-2, U-4, A-4)						
6	 Energy Measurement and 6.1 Energy Measurement an Pyrheliometer, Combust 6.2 Energy Conservation: Energy Conservation: Energy Consumption 6.3 Energy Consumption 6.4 Energy Audit- Definition 	Conservation Id Instruments: Lux meters, Pyra- tion analyzer nergy Efficiency-Boiler & Furn rgy Loss Prevention-Thermal In on, Need of Energy Audit, Type	anometer, Sunshine Recorder, ace Efficiency, Waste Heat sulation s of Energy Audit.						
	Course Outcome: CO6	Teaching Hours:07	Marks:08 (R-2, U-2, A-4)						

8

Level of questions:

R: Remember, U: Understand, A: Apply

Suggested Specifications Table (Theory):

Unit	S	Distribution of Theory Marks				
No	Topic Title	R Level	U Level	A Level	Total Marks	
1	Introduction to Conventional & Non-conventional Energy Resources	4	4	2	10	
2	Solar Energy Technology	2	4	4	10	
3	Solar thermal system	2	4	6	12	
4	Wind Energy Technology	2	4	4	10	
5	Biomass Energy Technology	2	4	4	10	
6	Energy Measurements and conservation	2	2	4	8	
	Total	14	22	24	60	

List of Experiments:

Sr.	Unit	COs	Title of the Experiments	Hours
NO.	NO			
1	1	CO1	Collect information about global and Indian energy market from	4
			websites and prepare write-up	
2	2	CO2	Visit to a commercial or Industrial Solar water heating Installation.	4
			Writing a report about collector layout, piping and fittings and	
			measurement of performance of the system.	
3	3	CO3	Collect information about photovoltaic array used for an application	4
			such as pumping, home lighting etc. making use of energy	
			instruments.	

Sr.	Unit	COs	Title of the Experiments	Hours
No.	No			
4	4	CO4	Study of a Small Hydraulic Power plant. Write about location,	4
			capacity, efficiency, construction and working of the plant	
5	4	CO4	Study construction and working of horizontal axis wind mill or to	2
			visit a nearest wind farm and write a report.	
6	5	CO5	Visits to a biogas plant or biomass gasification facility. Writing a	4
			report on plant structural details and components. Measurement of	
			performance.	
7	6	CO 6	Assignment on Calculation Of Energy Consumption of Household	4
			Appliances (Fan, T.V.Washing Machine, Geyser etc) and prepare	
			Report.	
8	6	CO 6	Conducting walk through energy audit of a small establishment such	4
			as workshop/Office/Home/SSI unit.	
		Total		30

ODIVITION .

References/ Books

Sr. No.	Title	Author, Publisher, Edition and Year Of publication	ISBN
1	Non conventional energy sources	G.D.Rai, Khanna Publishers, New Delhi, 6 th Ed, 1988	978-8174-0907-37
2	Solar energy, Principles of Thermal Collection & Storage	S.P.Sukhatme, J. Nayak, Tata McGraw Hill Publishing Co.Ltd. Delhi, 3 rd Ed. 1996	978-9387-0961-58
3	Biogas Technology- A practical Handbook, Vol 1	K.C. Khandelwal, S.S.Mahdi, Tata McGraw Hill Publishing Co. Ltd, New Delhi, 1993	978-0074-5172-39
4	Solar photovoltaic fundamentals & Applications	Chetansingh Solanki, PHI Learning Pvt.Ltd. New Delhi, 3 rd Ed, 2015	978-8120-3511-10
5	Non-Conventional Energy Resources	B.H.Khan, Mc Graw Hill Publishing Co. Ltd, New Delhi, 3 rd Ed, 2017	978-0070-6065-48
6	Guide Book for National Certification for Energy Managers and Energy Auditors, Book 1 – General Aspects of Energy Management and Energy Audit	Bureau of Energy and Efficiency (BEE)	

E-References:

Website of Bureau of Energy and Efficiency (www.bee-india.nic.in)

- Energy management (www.energymanagertraining.com)
- http://nptel.ac.in/courses/112105051/
- https://www.youtube.com/watch?v=3dJAtHaSQ98
- https://www.youtube.com/watch?v=xokHLFE96h8
- http://www.tatapower.com/businesses/renewable-energy.aspx
- http://www.cleanlineenergy.com/technology/wind-and-solar

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	1	1	1	1	1	2	2	1	1
CO2	2	1	1	3	1	2	2	2	3
CO3	3	2	2	3	1	2	3	2	3
CO4	2	3	2	2	1	2	3	1	3
CO5	2	3	2	3	1	2	3	2	3
CO6	3	2	2	3	1	2	3	2	3

CO Vs PO and CO Vs PSO Mapping

Industry Consultation Committee:

Sr. No	Name	Designation	Institute/Organisation	
1	Mr. Dharme G.S.	Workshop Superintendent	Agnel Polytechnic, Bandra, Mumbai	
2	Mr. Mane M.A.	Assistant Professor	Suman Ramesh Tulsiani Technical Campus Kamshet, Pune	
3	Mr.Raut N.N.	Deputy General Manager- Operations	Sunrise Industries (India) Limited,Vadodara	
4	Ingle D.R.	Directional Drilling Engineer	Jindal Drilling & Industries Ltd. Mumbai	
5	Mr. Jamnik Y.B.	Lecturer in Mechanical Engineering	Government Polytechnic, Mumbai	
6	Mr. Dhembare E.C.	Lecturer in Mechanical Engineering	Government Polytechnic, Mumbai	

Coordinator,

Curriculum Development,

Head of Department

Department of Mechanical Engineering

Department of Mechanical Engineering

I/C, Curriculum Development Cell

Principal

Program	Programme : Diploma in Mechanical Engineering (Sandwich Pattern)									
Course	Course Code: ME19304 Course Title: Power Engineering and Refrigeration & Air Conditioning									
Compul	Compulsory / Optional: Compulsory									
Teachin	ng Sche	eme and	l Credits			Examin	ation S	cheme		
L	Р	TU	Total	TH (2 Hrs 30 min.)TS1 (1 Hr)TS2 						
3	2		5	60	20	20			25	125

Abbreviations: TH- Theory; PR-Practical; TU-Tutorial; TS1 and TS2- Term Tests; OR-Oral Exam; TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal assessment Note: For Minimum passing marks under various heads, refer, examination rule AR26.

Rationale:

Power producing and absorbing devices are essentials for mechanical engineering. It is necessary for technologists to analyze working and monitor the performance of devices like internal combustion engines, air compressors, gas turbines and steam turbines. This knowledge is also useful in selecting suitable prime mover for given application and to maintain and test the same. The diploma holders in Mechanical Engineering are responsible for supervising and maintenance of Refrigeration& Air Conditioning systems. For this purpose, the knowledge and skill covering basic principles of refrigeration and air conditioning is required to be imparted to the students, which play a vital role in maintaining controlled atmosphere in different domestic and industrial applications.

Course Outcomes: Student should be able to-

CO1	Identify different components and test the performance of I.C. Engine.
CO2	Maintain reciprocating air compressors.
CO3	Describe working and applications of steam turbines and steam condensers.
CO4	Identify different components of gas turbine and jet engines.
CO5	Test the performance of refrigeration and air-conditioning systems.
CO6	Make basic calculations of psychometric properties and processes.

Course Content Details:

Unit No	Topics / Sub-topics
	IC Engines and Testing of IC Engines
1	1.1 Internal Combustion Engines: Assumptions made in air standard cycle, Brief description of Carnot, Otto and Diesel cycles with P-V and T-S diagrams, Internal and external combustion engines; advantages of I.C. engines over external combustion engines, classification of I.C. engines, neat sketch of I.C. engine indicating component parts, Function of each part and materials used for the component parts - Cylinder, crank case, crank pin, crank, crank shaft, connecting rod, wrist pin, piston, cylinder heads, exhaust valve, inlet valve, Working of four-stroke and two-stroke petrol and diesel

Page]

Unit No	Topics / Sub-topics
	 engines, Comparison of two stroke and four stroke engines; Comparison of C.I. and S.I. engines, Valve timing and port timing diagrams for four stroke and two stroke engines. 1.2 Engine Systems: Fuel system of Petrol engines; Principle of operation of simple and Zenith carburetors, Fuel system of Diesel engines; Types of injectors and fuel pumps, Cooling system- air cooling, water cooling system with thermo siphon method of circulation and water cooling system with radiator and forced circulation (description with line diagram). Comparison of air cooling and water cooling system; Ignition systems – Battery coil ignition and magneto ignition (description and working). Comparison of two systems; Types of lubricating systems used in I.C. engines with line diagram; Types of governing of I.C. engines – hit and miss method, quantitative method, qualitative method and combination methods of governing; their applications; Objective of super charging 1.3 Performance of I.C. Engines: Brake power; Indicated power; Frictional power; Brake and Indicated mean effective pressures; Brake and Indicated thermal efficiencies; Mechanical efficiency; Relative efficiency; Performance test; Morse test; Heat balance sheet; Methods of determination of B.P., I.P. and F.P., Simple numerical problems on performance of I.C. engines. Concept of pollutants in SI and CI engines, pollution control norms for two and four wheelers, BS4 and BS6. Engine Control Unit (ECU): working
	Course Outcome: CO1 Teaching Hours: 12 Marks: 12 (R-2, U-4, A-6)
2	 Air Compressors 2.1 Functions of air compressor – uses of compressed air, types of air compressors, Construction and working of Single stage and two stage reciprocating air compressor, intercooling, representation of processes involved on PV diagram, calculation of work done 2.2 Testing of reciprocating air compressors: Pressure ratio, compressor capacity, FAD, volumetric efficiency, isothermal efficiency, numerical. Methods of energy saving. 2.3 Rotary compressors – types, descriptive treatment of centrifugal compressor, axial flow compressor, vane type compressor. Comparison of rotary with reciprocating
	Course Outcome: CO2 I eaching Hours:06 Marks:08 (R-2, U-2, A-4) Steam Turbines and Steam Condensers
3	 3.1 Function and use of steam turbine, Steam nozzles - types and applications Steam turbines impulse, reaction, construction and working principle, governing of steam turbines, 3.2 Function of a steam condenser, elements of condensing plant, Classification - jet condenser, surface condenser 3.3 Cooling pond and cooling towers types Course Outcome: CO3 Teaching Hours:05 Marks:06 (R-2, U-2, A-2)

Unit No	Topics / Sub-topics
4	 Gas Turbines and Jet Propulsion 4.1 Types of gas turbine: Classification, open cycle gas turbine and closed cycle gas turbine, PV and TS diagram and working of gas turbine. Brayton cycle, comparison of gas turbines with reciprocating IC engines, applications and limitations of gas turbine. 4.2 Jet Propulsion :Principle of operation of turbojet, turboprop, ram-jet engine , application of jet engines 4.3 Rocket propulsion: liquid and solid propellant systems, rocket fuels. Course Outcome: CO4 Teaching Hours:04 Marks:06 (R-2, U-2, A-2)
	Introduction to Refrigeration
5	 5.1 Refrigeration systems: Basic Components, Flow diagram of working of Vapor compression cycle; Representation of the vapor compression cycle on P-H, T-S & P-V Diagram; Expression for Refrigerating effect, work done and power required; Types of Vapor Compression cycle; Effects of super heating and under cooling, its advantages and disadvantages; Simple Vapor absorptions cycle and its flow diagram; Simple Electrolux system for domestic units; Comparison of Vapor absorption and vapor compression system; Simple problems on vapor compression cycle 5.2 Refrigeration equipments: Compressor - types of compressors; Hermetically sealed and Semi hermetically sealed compressor; Condensers - Air Cooled, water cooled, natural and forced draught cooling system; Advantages and disadvantages of air cooled and water cooled condensers; Evaporators -natural, convection, forced convection types. 5.3 Refrigerants and lubricants: Introduction to refrigerants; Properties of good refrigerants; Classification of refrigerants by group number and commonly used refrigerants; Classification of refrigerants leakage; Charging the system with refrigerant; Lubricants used in refrigerants leakage; Charging the system with refrigerant; Lubricants used in refrigerants leakage; Collarging the system of static expansion valve; High side and low side float valve; Solenoid valve; Evaporator pressure regulator 5.5 Safety Devices-Thermostat, overload protector LP, HP cut out switch. 5.6 Application of refrigeration: Slow and quick freezing; Cold storage and Frozen storage; Dairy refrigeration; Ice making industry; Water coolers. 5.7 Procedure of collecting refrigerant and charging of refrigerant during maintenance (pumping down)
	Course Outcome: CO5Teaching Hours:10Marks:16 (R-4, U-6, A-6)Air conditioning
6	 6.1 Air conditioning: Introduction to Air conditioning; Factors affecting Air conditioning; specific humidity, relative humidity, degree of saturation, DBT, WBT, DPT, sensible heat, latent heat, total enthalpy of air. Psychometric chart and its use; Psychometric process-sensible heating and cooling, Humidifying and dehumidifying; Adiabatic saturation process; Equipments used in air conditioning cycle; Air conditioning units and

 ${}^{\rm Page}3$

Unit No	Topics / Sub-topics							
	plants. Window air-conditioning, split type air-conditioning, car air-conditioning							
	central air-conditioning.							
	6.2 Latest development in refrigeration and air conditioning, Inverter technology, auto-							
	defrosting, blast cooling, star rating.							
	6.3 Refrigeration and Air-conditioning tools: Tools used in refrigeration and Air conditioner							
	installation; Installation procedure; Faults in refrigeration and air conditioning system;							
	Servicing procedure.							
	Course Outcome: CO6 Teaching Hours:08 Marks:12 (R-4, U-4, A-4)							

Suggested Specifications Table (Theory):

Level of questions: R: Remember, U: Understand, A: Apply

Unit		Distribution of Theory Marks				
No	Topic Title POLITE	R Level	U Level	A Level	Total Marks	
1	IC Engines and Testing of IC Engines.	2	4	6	12	
2	Air Compressors	2	2	4	08	
3	Steam Turbines and Steam Condensers	2	2	2	06	
4	Gas Turbines and Jet Propulsion	2	2	2	06	
5	Introduction to Refrigeration	4	6	6	16	
6	Air conditioning	64	4	4	12	
	Total	16	20	24	60	

List of experiments:

List of	f experi	ments:	"GANOWLEDGE TO	
Sr. No.	Unit No	COs	Title of the Experiments	Hours
1	1	CO1	Assemble/dismantle 4 stroke petrol or diesel engine.	02
2	1	CO1	Assemble/dismantle 2 stroke petrol or diesel engine.	02
3	1	CO1	Perform test on the given I.C. Engine to prepare heat balance sheet.	04
4	1	CO1	Perform Morse test on the given I.C. Engine.	04
5	1	CO1	Use exhaust gas analyzer to measurement and analyze pollutants in the given I.C Engine.	02
6	2	CO2	Perform test on the two stage reciprocating air compressor to find volumetric and isothermal efficiency.	04
7	3	CO3	Assemble/dismantle steam turbine and steam condenser model.	02
8	4	CO4	Assemble/dismantle gas turbine model.	02

9	5	CO5	Perform test on vapor compression refrigeration cycle test rig to find COP.	04
10	6	CO6	Demonstration and working of split type and window type air- conditioner.	02
11	6	CO6	Visit to an ice plant or cold storage plant. Or central air conditioning plant.(If possible)	02
			Total	30

References/ Books:

Sr.	Title	Author, Publisher, Edition and	ISBN
No.		Year Of publication	
1	Internal combustion engines	Mathur M.I., Sharma R.P.; Dhanpatrai Publication (P)Ltd, New Delhi, 8 th Ed, 2012	978-8189-9284-69
2	Thermal Engineering	Rajput R.K, Laxmi Publications New Delhi, 9 th Ed., 2010	978-8131-8080-47
3	A Textbook of Internal Combustion Engines	Rajput R.K, Laxmi publications, New Delhi, 3 rd Ed., 2016	978-8131-8006-69
4	IC Engines combustion and Emissions	Pundir B.P, Narosa Publishing House, New Delhi, 2 nd Ed, 2010	978-8184-8708-79
5	Refrigeration and Air Conditioning	Khurmi R.S, Gupta J.K; S. Chand Publication, New Delhi, 4 th Ed, 2016	978-8121-9278-19
6	Thermal Engineering	Singh Sadhu, Pati Sukumar, Pearson Education, New Delhi, 1 st Ed.; 2018	978-9352-8666-87
7	Engineering Thermodynamics	PK Nag; Tata McGraw Hill, Delhi, 6 th Ed; 2008	978-9352-6064-29
8	Engineering Thermodynamics	CP Arora, Tata McGraw Hill, New Delhi, 1 st Ed., 2001.	978-0074-6201-44

E-References:

- 1. https://swayam.gov.in/
- 2. <u>www.youtube.com</u>
- 3. https://learnengineering.org/
- 4. https://nptel.ac.in/

CO Vs PO and CO Vs PSO Mapping

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	3	3	2	1	1	1	1	2	1
CO2	2	2	1	1	1	1	1	2	2
CO3	3	2	2	2	1	1	1	2	3
CO4	3	3	3	2	2	1	1	2	3
CO5	3	3	3	2	2	1	1	2	3
CO6	3	3	3	2	2	1	1	2	3

Sr.	Name	Designation	Institute/Organisation
No			
1	Mr. A.G. Joshi	Lecturer in Mechanical	Government Polytechnic, Ahmednagar
		Engineering	
2	Mr. Mahesh Mahadik	Sr. Project Engineer	Atlas Copco India Ltd. Pune
2	Mr. Amol S.	Lecturer in Mechanical	Indira Gandhi Polytechnic, Belwandi
5	Dhawade	Engineering	(Sugar), Ahmadnagar
1	Mr. Vaibhav Patil	MEO Class IV, Marine	Sea World Management Ltd. Monaco
+		Engineering Officer	Italy.
5	Mr. E.C. Dhembare	Lecturer in Mechanical	Government Polytechnic, Mumbai
5		Engineering	
6	Mr. Y.B.Jamnik	Lecturer in Mechanical	Government Polytechnic, Mumbai
0		Engineering	

Industry Consultation Committee:

Head of Department

Department of Mechanical Engineering

Curriculum Development,

Department of Mechanical Engineering

I/C, Curriculum Development Cell Principal

S KNOWLEDG

Prog	Programme : Diploma in Mechanical Engineering (Sandwich Pattern)									
Course Code: ME 19306			Course Title: Advanced Manufacturing Processes							
Compul	Compulsory / Optional: Compulsory									
Teaching Scheme and Credits					Examinat	ion Sc	heme			
L	Р	TU	Total	TH (2 Hrs 30 min.)	TS1 (1Hr)	TS2 (1Hr)	PR	OR	TW	Total
3	2		5	60	20	20	25*		25	150

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination Note: For Minimum passing marks under various heads, refer, examination rule AR26. Two practical skill tests are to be conducted. First skill test at midterm and second skill test at the end of the term.

Rationale:

After getting conversant with basic manufacturing processes, it is necessary for technician to know about the area of advanced manufacturing processes. This course will impart knowledge for working in modern manufacturing environment. It will also help to familiarize with working principles, operations performed on non-traditional machining, surface finishing, plastic processing and machine tools. To keep pace with the current industrial scenario, this course will introduce the learner to applications of robots in manufacturing. The course also contains the topics as machine tool erection, commissioning and maintenance.

Course Outcomes: Student should be able to:

CO1	Describe construction and applications of shaper, planer and Special Purpose Machines.
CO2	Describe Non- traditional machining processes and Rapid Prototyping Techniques
CO3	Describe various plastic processing techniques and steps in powder metallurgy
CO4	Describe the applications of robots in manufacturing
CO5	Describe various super finishing and surface modification techniques.
CO6	Describe machine tool erection, commissioning, and maintenance procedure.

Course Content Details:

Unit No	Topics / Sub-topics
	Shaper, Planer and Special Purpose Machines
1	1.1. Specifications of shaper, construction & Working, Whitworth quick return mechanism, Operations performed on planer1.2. Types of Planning Machine, Specifications of planer, Working mechanism, Operations performed on planer

Page 1

Unit No	Topics / Sub-topics							
	1.3. Special Purpose Machines (SPM): Need, Different layouts of SPM, Advantages and							
	Limitations, Types of SPMs, Difference between general purpose machine and SPM							
	Course Outcome: CO1Teaching Hours:05Marks: 10 (R-2, U-4, A-4)							
	Non-Traditional Machining Processes & RPT							
2	 2.1 Need, Classification, Comparison with traditional machining processes 2.2 Abrasive Jet Machining (AJM), Water Jet Machining (WJM), Electro-Discharge Machining (EDM), Laser Beam Machining (LBM)- Working principle, process parameters, Advantages, Limitations, and Applications 2.3 Rapid Prototyping: Need, Classification, Stereo Lithography, Selective Laser Sintering (SLS). Fused Deposition Modeling- working principle, Advantages and Applications 							
	Course Outcome: CO2 Teaching Hours:09 Marks: 10 (R-2, U-4, A-4)							
3	 3.1 Types of Plastics: Thermosetting, Thermoplastic plastics, Materials for processing plastics 3.2 Elastomer: properties and engineering applications of Natural rubber, butadiene rubber, silicone rubber 3.3 Plastic Processing: Working principle and applications of Compression moulding, Transfer moulding, Injection Moulding, Calendaring, Extrusion, Thermo-forming, Blow moulding 3.4 Safety Practices in plastic industry 3.5 Powder Metallurgy: Need, steps and applications, Advantages & Limitations 							
	Applications of Robots in Manufacturing							
4	 4.1 Need of robots in manufacturing, Classification of robots 4.2 Robot anatomy, 4.3 Applications of robots for material handling, welding, assembly, painting and inspection 4.4 Robot Safety Course Outcome: CO4 Teaching Hours:05 Marks: 08 (R-2, U-4, A-2) 							
	Super-Finishing Operations							
5	 5.1 Need of super-finishing processes 5.2 Working principle and application of Honing, Lapping, Polishing, Buffing 5.3 Process parameters for Honing, Lapping, Polishing, Buffing 5.4 Surface enhancement processes: Need, Working principle and applications of Burnishing, shot peening 							
	Course Outcome: CO5 Teaching Hours:05 Marks: 08 (R- 0, U-4, A-4)							

 ${\tt Page}2$

Unit No	Topics / Sub-topics								
	Machine Tool Maintenance								
6	 6.1 Need, objectives of maintenance of machine tools, Tools and Instruments required for maintenance 6.2 Types of maintenance, Basic maintenance practices for simple machine elements viz. bearings, couplings, shafts, pulleys, gear, chain and belts 6.3 Repair cycle Analysis, Maintenance records. Spare parts management, Maintenance Planning 6.4 Total Productive Maintenance-Principles, advantages, role of supervisor & workers 								
	Course Outcome: CO6 Teaching Hours:07 Marks: 08 (R-2, U-2, A-4)								
7	 Frection and Commissioning of Machine Tools 7.1 Need of foundation for Machine Tools, Foundation plans , Types of foundation bolts, Types of machine foundations, 7.2 Machine Erection, Installation and Leveling Course Outcome: CO6 								

Suggested Specifications Table (Theory):

Level of questions: R: Remember, U: Understand, A: Apply

Unit		Distribution of Theory Marks					
No	Topic Title	R Level	U Level	A Level	Total Marks		
1	Shaper, Planer and Special Purpose machines	2	4	4	10		
2	Non-Traditional Machining Processes & RPT	2	4	4	10		
3	Plastic Processing and Powder Metallurgy	2	2	4	8		
4	Application of Robots in Manufacturing	2	4	2	8		
5	Super-Finishing Operations	-	4	4	8		
6	Machine Tool Maintenance	2	2	4	8		
7	Erection and Commissioning of Machine Tools	2	4	2	8		
	Total	12	24	24	60		

List of Jobs/ Assignments:

Sr.	Unit	СО	Title of the Experiments/Assignment	Hours
No.	No			
1	1	CO1	One Job on shaper in the group of four students	4
2	2	CO2	ndustrial visit/ video to observe at least one non-traditional nachining process and report writing	
3	2	CO2	ndustrial visit/ video to observe rapid prototyping technique and eport writing	
4	3	CO 3	Demonstration of one plastic/ elastomer (rubber) processing technique	2
5	4	CO4	Industrial visit/ video to observe robotic application in manufacturing industry and report writing	4
6	5	CO 5	Industrial visit/ video to observe superfinishing operation in manufacturing industry and report writing	4
7	6	CO6	To prepare preventive maintenance chart for at least one machine in workshop	4
8	6	CO6	Preparation of foundation plan for given machine	4
		Total		30

References/ Books:

	lines.		
Sr.	Title	Author, Publisher, Edition and	ISBN
No.		Year Of publication	
1	Production Technology, Vol 2	O.P. Khanna, Dhanpat Rai & Co., 4 th Ed, 2012	978-9383-1820-39
2	Non -Conventional machining	P. K. Mishra, Narosa Publishing House, 7 th Ed, 1997	978-8173-1913-81
3	Elements of Workshop Technology Vol. II (Machine Tools)	Hajra Chawdhury, Media Promotors and Publications Pvt. Ltd. 15 th Ed, 2008	978-8185-0991-56
4	Industrial Maintenance	H. P. Garg, (Revised by Bhagawati Gupta),S. Chand Publication, Revised Ed, 2010	978-8121-9016-80
5	Production Engineering	P. C. Sharma S. Chand Publications, 4 th Ed, 1999	978-8121-9011-16
6	Production Technology	Hindustan Machine Tools Tata McGraw Hill, 2001	978-0070-9644-33

E-References:

Page⁴

www.mechanicalbooster.com www.britannica.com>technology>modificationofbasicmacinetool www.nptel.ac.in/content/storage/courses/112105127 www.pds.gov.in>downloads>plastic_processing_techniques www.blog.robotiq.com>whataredifferentypesofindustrilarobots

Government Polytechnic Mumbai

www.nptel.ac.in/content/storage2>courses>pdf www.easyengineering.nt>maintenenceengineering www.forgottenbooks.com>downloads>machinefoundationerection

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	2	2	2	2	1	1	2	2	1
CO2	3	3	2	3	1	1	2	2	3
CO3	2	1	2	2	1	1	2	2	2
CO4	1	1	3	1	2	1	2	3	2
CO5	2	2	3	3	2	2	3	3	3
CO6	2	3	2	3	1	2	2	2	3

CO Vs PO and CO Vs PSO Mapping

Industry Consultation Committee:

Sr.	Name	Designation	Institute/Organisation
No	12	22-204	
1	Mr. Puralkar Mohanish	Manager, R & D	Miles Ahead Tech Pvt. Ltd, Mumbai
2	Mr. Rao Virbhadra	Assistant Professor	Fr. C.R. College of Engineering,
			Mumbai
3	Mr. Hiremath P	Sr. Engineer	Reliance Engineering Ltd.
4	Mr. Ambadekar N M	Workshop Superintendent	Government Polytechnic, Thane
5	Mr. Joshi S. V.	Lecturer in Mechanical	Government Polytechnic, Mumbai
		Engineering	100
6	Mr. Ansari N N	Lecturer in Mechanical	Government Polytechnic, Mumbai
		Engineering	

Coordinator,

Curriculum Development,

Head of Department Department of Mechanical Engineering

Department of Mechanical Engineering

I/C, Curriculum Development Cell

Principal

Program	Programme : Diploma in Mechanical Engineering (Sandwich Pattern)									
Course Code: ME19307 Course Title: Production and Industrial Engineering										
Compul	Compulsory / Optional: Compulsory									
Teaching Scheme and Credits					Examination Scheme					
L	Р	TU	Total	TH (2 Hrs 30 min)	TS1 (1 Hr)	TS2 (1Hr)	PR	OR	TW	Total
3	2		5	60	20	20	-	-	25	125

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination Note: For Minimum passing marks under various heads, refer, examination rule AR 26. Two practical skill test are to be conducted. First skill test at mid term and second skill test at the end of the term

Rationale:

Manufacturing involves resources like men material and machines. All these resources are to be used in such that produce is ready at a proper time, quality as per customer requirement, at most competitive price. This is only possible when all the resources are used in a most productive way. This course will expose the students, the concept of productivity, production systems production planning, work study and modern production system.

This course will help students to take the right decisions to optimize resources utilization by improving productivity and manage effectively, to eliminate unproductive activities and design of products and processes, to use the charts to record, the activities of the people, materials and equipment to find alternative methods which minimizes waste and to implement the best method.

Course Outcomes: Student should be able to	0
--	---

CO1	Interpret production systems and productivity and plant layout.
CO2	Prepare the process plan for given job
CO3	Describe the production planning and control functions and modern techniques of production control.
CO4	Apply the techniques and tools for method stud
CO5	Apply the techniques and tools for time study
CO6	Describe the principles of motion economy & ergonomics

Course Content Details:

Unit No	Topics / Sub-topics
	Production Systems & Plant Layout
1	 1.1 Types of Production Systems-Batch production, Job Production and Continuous production system, and their comparison 1.2 Productivity: Definition of productivity, Labour productivity, Material productivity and Machine productivity. Methods of improving productivity

Unit No	Topics / Sub-topics								
	1.3 Plant Layout: Objectives, Types of plant layout, Principles of plant layout design, Factors								
	affecting plant layout, Symptoms of bad plant layout								
	Course Outcome: CO1 Teaching Hours:08 Marks: 10 (R-2, U-4, A-4)								
	Process planning								
	2.1 Process planning for a product. Sequence of operations, Operation sheet								
2	2.2 Types of operations, Combining of operations								
	2.3 Determination of inspection stages								
	Course Outcome:CO2Teaching Hours:07Marks: 10 (R-2, U-4, A-4)								
	Production Planning and Control (PPC) & Modern production control Techniques								
	2.1 Longetones and definition of DDC. From the new CDDC								
	3.1 Importance and definition of PPC, Functions of PPC,								
	3.2 Operation routing, Job Sequencing (in Jobs and 2 machines)								
3	3.4 Production economics. Elements of costing								
	3.5 Just in time system. Kanban, Lean manufacturing system. Flexible manufacturing system.								
	Kaizen								
	Course Outcome:CO3 Teaching Hours: 08 Marks: 10 (R-2, U-4, A-4)								
	Method Study								
	4.1 Definition and objectives of method study, Procedure of method study, Selection of work								
4	for method study								
	chart								
	4.3 Critical examinations and analysis, primary and secondary questions. Comparison of								
	present and proposed methods								
	Course Outcome:CO4 Teaching Hours: 08 Marks:10 (R-2, U-4, A-4)								
	Time Study								
	5.1 Definition and chieves of time study. Dress dure Equipment required to some dust time								
_	study.								
5	5.2 Factors affecting rate of work Types of elements Rating and allowances								
	5.3 Calculation of standard time								
	5.4 Introduction to Maynard Operation Sequencing Technique (MOST)								
	Course Outcome:CO5 Teaching Hours:07 Marks:10 (R-2, U-4, A-4)								
	Principle of motion economy & Ergonomics								
	61 Conversions related to hymon hadry tools and environment and much along								
-	6.1 General considerations related to numan body, tools and equipment and work place								
6	ayou. 6.2 Two handed process chart Multiple activity chart THERRI ICS								
	6.3 Definition, importance and objectives of ergonomics. Man- machine system and its three								
	aspects								

Unit No	Topics / Sub-topics							
	6.4 Design of information display, Design of controls, and environmental factors							
	Course Outcome:CO6	Teaching Hours:07	Marks:10 (R-2, U-4, A-4)					

Suggested Specifications Table (Theory):

Level of questions: R: Remember, U: Understand, A: Apply

Unit		Distribution of Theory Marks					
No	Topic Title	R Level	U Level	A Level	Total Marks		
1	Production Systems & Plant Layout	2	4	4	10		
2	Process planning	2	4	4	10		
3	Production Planning and Control (PPC) & Modern production control Techniques	2	4	4	10		
4	Method Study	2	4	4	10		
5	Time Study	2	4	4	10		
6	Principle of motion economy & Ergonomics	2	4	4	10		
	Total	12	24	24	60		

List of experiments:

Sr. No.	Unit No	COs	Title of the Experiments	Hours
1	1	CO1	Design of plant layout for manufacturing of given product (In group of 4 students)	4
2	1	CO1	Assignment on production systems and productivity	2
3	2	CO2	Preparation of Process plan and operation sheet for given component (In group of 4 students)	4
4	3	CO3	Preparation of PPC documents for assigned product	2
5	3	CO3	Assignment on job sequencing and line balancing	2
6	4	CO4	Preparation of outline process chart and flow process chart for the assigned task	2
7	4	CO4	Method study for the existing system and improved system for performing assigned task	4
8	5	CO5	To conduct time study for a assigned activity	4
9	5	CO5	Case study on application of MOST	2
10	6	CO6	Preparation of two handed process chart for the given task	2
11	6	CO6	Ergonomic analysis of man-machine system on any machine in workshop	2
		Total		30

References/ Books:

Sr. No	Title	Author, Publisher, Edition and Vear Of publication	ISBN
1	Introduction to Work Study	International Labor Organization, Geneva, Oxford & IBH, 4 th Revised Ed, 2015	978-8120-4060-25
2	Production Planning and Control	L C Jhamb, Everest Publishing House, 7 th Ed, 2002	978-8186-3142-41
3	A Text Book of Production (operations) Management	L C Jhamb, Everest Publishing House, 7 th Ed, 2002	978-8186-3142-41
4	Industrial Engineering and Management	O. P. Khanna, Dhanpatrai Publications, 2018	978-8189-9283-53
5	Industrial Engineering and Production Management	Martand Telsang, S. Chand Publisher, 2 nd Revised Ed, 2006	978-8121-9177-35

E-References:

- 1. <u>www.inc.com.>john -rampton</u>
- 2. www.vbengg.com/plantlayout-design
- 3. <u>http://doi.org/10.1007/1-4020-0612-8</u>
- 4. www.ddegjust.ac.in.upload.pom-326
- 5. www.ijsdr.org.paper.IJSDR1765093
- 6. www.yourarticlelibrary.com.costaccounting.timerecording
- 7. www.researchgate.net.publication.271588974
- 8. www.ergonomics.org.uk.public.resources
- 9. www.inestopedia.com/terms/twobinsystem.inventrotycontrol

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	2	2	2	2		E 10	2	3	1
CO2	2	3	2	1	1	1	2	2	2
CO3	3	2	2	2	1	1	2	1	1
CO4	3	2	2	1	2	1	2	3	3
CO5	2	2	2	3	2	1	3	3	2
CO6	2	2	2	2	2	2	2	2	2

CO Vs PO and CO Vs PSO Mapping

Industry Consultation Committee:

Sr.	Name	Designation	Institute/Organisation		
No					
1	Mr. Hiremath Prashant	Engineer	Reliance Industries Ltd. Navi		
			Mumbai		
2	Mr. Rao Virbhadra	Assistant Professor	Fr. C.R. College of Engg.,		
			Mumbai		
3	Mr. Puralkar Mohanish	Manager R & D	Miles Ahead Tech Pvt. Ltd.		
			Mumbai		
4	Mr. Joshi S. V.	Lecturer in Mechanical	Government Polytechnic,		
		Engineering	Mumbai		
5	Mr. Ansari N N	Lecturer in Mechanical	Government Polytechnic,		
		Engineering	Mumbai		

Coordinator,

Curriculum Development,

Head of Department Department of Mechanical Engineering

Department of Mechanical Engineering

I/C, Curriculum Development Cell

Principal

11

Program	Programme: Diploma in Mechanical Engineering (Sandwich Pattern)									
Course Code: ME19312 Course Title: Basics of Mechatronics										
Compul	Compulsory / Optional: Compulsory									
Teaching Scheme and Credits Examination Scheme										
L	Р	TU	Total	TH (2 Hrs 30 min)	TS1 (1 Hr)	TS2 (1Hr)	PR	OR	TW	Total
3	2		5	60	20	20		-	25	125

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination Note: For Minimum passing marks under various heads, refer, examination rule AR26. Two practical skill tests are to be conducted. First skill test at midterm and second skill test at the end of the term

Rationale:

The integration of Mechanical Engineering, Electrical Engineering, Electronics Engineering, Computer Technology and Control Engineering is increasingly forming a crucial part in the design, manufacture and maintenance of wide range of engineering products and processes. As a consequence, there is a need for a diploma engineers to understand systems used in automation. This course gives exposure to understand the basics of mechatronics.

Course Outcomes: Student should be able to

CO1	Identify various components of measuring systems.
CO2	Identify different sensors for various control system applications.
CO3	Use of OPAMP, Actuators and Switches.
CO4	Describe functional elements of mechatronics involved in CNC and other applications.
CO5	Describe procedure for installation and troubleshooting of PLC
CO6	Describe the elements of MEMS

Course Content Details:

Unit No		Topics / Sub-topics						
	Introduction to Measurement							
	1.1 Measuring systems and their	components.						
	1.2 Static and dynamic characteristics							
1	1.3 Measuring errors							
	1.4 Open loop system and closed	loop system, applications of clo	osed loop systems					
	1.5 Control action – proportional	, integral, derivative, PI, PD, PII	D					
	Course Outcome: CO1	Teaching Hours :06	Marks: 06 (R-2, U-4, A-0)					
	Sensors and their applications							
2	2.1 Sensors & Transducers-classi2.2 Displacement sensors, position	ification of sensors pertaining to on sensors &Proximity sensor, E	the application in manufacturing. ddy current proximity sensor,					

Page.

Approved copy

Unit	То	opics / Sub-topics								
NO	2.3 Velocity and motion sensors									
	2.4 Force sensors – Strain gauges									
	2.7 Pressures sensors - Dianhragm Piezoelectric sensor Tactile sensor									
	2.6 Potentiometer sensor Inductive provimity sensor Optical encoder Draumatic sensor Light									
	sensor									
	Course Outcome: CO2	Teaching Hours:08	Marks: 12 (R-4, U-6, A-2)							
	Signal Processing									
	 3.1 Amplification/ Attenuation – Operational amplifier types (OPAMP)- Inverting, Voltage follower, Adder, Subtractor, Integrator 3.2 Amplifier types & need of filter – low pass filter, high pass filter, band pass filter band reject 									
3	filter									
	3.3 Types of I/P – step I/P, ramp I/P									
	3.4 Actuators- Mechanical, Hydraul	ic and Pneumatic								
	3.5 Limit switches, Thumb wheel sw	witches, Relays, Solenoids, Step	oper motor and Servo motor							
		POLYTECK								
	Course Outcome: CO3	Teaching Hours: 07	Marks: 12 (R-4, U-6, A-2)							
4	 4.1 Definition of Mechatronics 4.2 Importance of mechatronics in automation – flow diagram for the operations involved in manufacturing of a product. 4.3 Mechatronics system - functional elements of mechatronics 4.4 Basic Mechanical aspects of Mechatronics 4.5 Linear motion drives used in CNC machines 4.6 Tool monitoring systems in CNC machines 									
	Course Outcome: CO4	Teaching Hours: 09	Marks:12 (R-4, U-6, A-2)							
	Programmable Logic Controller									
5	 5.1 Introduction, PLC definition, PLC block diagram, Difference between relay panel and PLC. 5.2 Input/output modules (Analog, digital), concepts of sink/source, latch/unlatch, advantages and disadvantages of PLC. 5.3 Installation, troubleshooting and maintenance of PLC. 5.4 Networking of PLC. 5.5 Introduction to microprocessor and microcontroller. 									
	5.6 Data convention devices- Comp	arators, Encoders, ADC, DAC								
	Mechatronics Systems	Teaching Hours:10	Marks: 12 (R-4, U-0, A-2)							
6	6.1 MEMS (Micro electro mechanic6.2 Elements of MEMS.6.3 Applications, advantages of ME	cal systems) MS								
	6.4 Micromachining									
	Course Outcome: CO6	Teaching Hours: 05	Marks: 06 (R-2, U-4, A-0)							

Suggested Specifications Table (Theory):

Level of questions: R: Remember, U: Understand, A: Apply

Unit		Distribution of Theory Marks						
No	Topic Title	R Level	U Level	A Level	Total Marks			
1	Introduction to Measurement	2	4	-	06			
2	Sensors and their applications	4	6	2	12			
3	Signal Processing	4	6	2	12			
4	Mechanical aspects of Mechatronics	4	6	2	12			
5	Programmable Logic Controller	4	6	2	12			
6	Mechatronics Systems	2	4	-	06			
	Total	20	32	8	60			

ENT POLYTECHNIC

List of experiments:

Sr.	Unit	COs	Title of the Experiments	Hours			
No.	No		A Star				
1	1	CO1	Identify different types of Mechatronics system built in automated machine tools.	04			
2	2	CO2	Assignment on sensors & transducers.	02			
3	3	3 CO3 Assignment on OPAMP & actuators.					
4	3	CO3	CO3 Identify various electro pneumatic systems in material handling automation module.				
5	4	CO4	Assignment on mechanical aspects of Mechatronics.	04			
6	5	CO5	Maintenance of PLC of any automation system.	04			
7	6 CO6 Assignment on micromachining.						
8	-	CO1- CO6	Industrial visit to any Automated plant.	04			
	Total			30			

Note: All the experiments are compulsory.

References/ Books:

Sr.	Title	Author, Publisher, Edition and	ISBN
No.		Year Of publication	
1	Mechatronics Handbook HMT	HMT, Tata McGraw Hill P,1 st	978-0074-6364-35
1		Ed., 2000	
	Mechatronics-Electronic	Bolton W, Pearson Education Ltd,	978-8131-7325-33
2	control systems in Mechanical	4 th Ed; 2010	
	and Electrical Engineering		
	Introduction to Mechatronics	Histand B. H. & Alciatore D. G,	978-0071-1955-77
3	and Measurement systems	Tata McGraw Hill Publishing, 4 th	
		Ed., 2002	
	Programmable Logic	John W. Webb & Ronald Reis,	978-8120-3230-87
4	Controllers	Prentice Hall of India, 5 th Ed.,	
		2002	
	Programmable Logic Control-	NIIT	978-8120-3252-58
5	Principles and Applications	Prentice Hall of India, 1 st Ed.,	
		2004	
	Mechatronic Systems Design	Kolk R. A. Shetty D	978-1/39-0619-85
6	Weenauonie Systems Design	Vikas Publishing New Delhi 2 nd	970-1439-0019-03
0	5	Ed., 2010	
	Mechatronics Principle,	Mahalik N. P.	978-0070-4837-43
7	Concepts and applications	Tata McGraw hill Publishing, 1 st	
		Ed., 2014	
		24., 2011	

ESTD. 1960

E-References:

- 1. https://nptel.ac.in/courses/112103174/
- 2. https://mechatronics.colostate.edu/internet-links/
- 3. <u>https://www.youtube.com/watch?v=4Eaou2pOGGo</u>
- 4. <u>https://www.youtube.com/watch?v=RoPgRc8aj54</u>
- 5. https://www.youtube.com/watch?v=ZvUJBeCVhW8
- 6. https://www.youtube.com/watch?v=nzUyWNPAkiA
- 7. <u>https://www.youtube.com/watch?v=jLJUIiQREUw</u>
- 8. <u>https://www.youtube.com/watch?v=5FcY9fDWiJ4</u>
- 9. <u>https://www.youtube.com/watch?v=B7S_StbcaYc</u>
- 10. <u>https://www.youtube.com/watch?v=FKDWCxPHvTo</u>
- 11. <u>https://www.youtube.com/watch?v=Z7pyS5zIbBM</u>
- 12. <u>https://www.youtube.com/watch?v=Ro_tFv1iH6g</u>
- 13. https://www.youtube.com/watch?v=oxMdDsud5vg

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	2	1	2	1	2	1	3	2	1
CO2	2	2	3	2	2	2	3	2	2
CO3	3	2	3	3	2	2	3	3	2
CO4	3	2	3	3	2	2	3	3	2
CO5	3	3	3	2	3	2	3	3	2
CO6	3	3	3	2	3	2	3	3	2

CO Vs PO and CO Vs PSO Mapping

Industry Consultation Committee:

Sr. No	Name	Designation	Institute/Organisation
1	Mr. Sachin Khalkar	Deputy Manager	Mahindra & Mahindra Ltd Nashik
2	Mr. Tushar Mestry	Deputy Manager, Production	Jurchen Technology India Pvt LTD, Boiser
3	Mr. Yogesh Gaidhani	Head of Department	K K Wagh Polytechnic Nashik
4	Mr. Gajanan Gore	Lecturer in Mechanical Engineering	Government Polytechnic Jalna
5	Mr. K. Z. Dhangare	Lecturer in Mechanical Engineering	Government Polytechnic, Mumbai
6	Miss. A. R. Hagawane	Lecturer in Mechanical Engineering	Government Polytechnic, Mumbai
		GANOWLEDGE TO	
Coo	rdinator	Head of Departme	nt

Coordinator,

Curriculum Development,

Head of Department Department of Mechanical Engineering

Department of Mechanical Engineering

I/C, Curriculum Development Cell

Principal

GOVERNMENT POLYTECHNIC MUMBAI

(Academically Autonomous Institute of Government of Maharashtra)

Department of Mechanical Engineering P19 Curriculum Fifth Semester

GOVERNMENT POLYTECHNIC MUMBAI

(Academically Autonomous Institute, Government of Maharashtra)

Teaching and Examination Scheme (P19)

With effect from AY 2019-20

Programme: Diploma in Mechanical Engineering (Sandwich Pattern)

Term / Semester -V

			Teaching Hours/Contact Hours				Examination Scheme (Marks)						
Course	Course Title					Credits		Theor	у				
Code		L	Р	TU	Total		TH	TS1	TS2	PR	OR	TW	Total
ME19405	Optional Course-II <i>(Select any One)</i> TOOL ENGINEERING	3	90	YT	CHA.	2							
ME19406	INDUSTRIAL MAINTENANCE	3	2		5	5	60	20	20			25	125
ME19407	INVENTORY CONTROL		1	K.F.		12	9						
ME19310	METROLOGY & QUALITY CONTROL	3	2	-5.0	5	5	60	20	20	25*		25	150
ME19305	CNC MACHINES & AUTOMATION	3	2		5	5	60	20	20			25	125
ME19302	INDUSTRIAL HYDRAULICS AND PNEUMATICS	3	2		5	5	60	20	20			25	125
ME19311	DESIGN OF MACHINE ELEMENTS	3	2	1-	5	5	60	20	20			25	125
ME19303	SOLID MODELING	j	4		4	4				25*		25	50
ME19308	PROJECT	E-8	_4		4	4					50*	50	100
ME19501	ENTREPRENUERSHIP DEVELOPMENT & MANAGEMENT	Y.	2#		2	2							
	Total	15	20		35	35	300	100	100	50	50	200	800
	Total Contact Hours		•	1	35		u		•		•	I	4

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment)

* Indicates assessment by External Examiner else internal practical skill test, #indicates self, on- line learning Mode, @ indicates on line examination Note: Duration of Examination--TS1&TS2 -1 hour, TH- 2 hours 30 min, PR/OR – 3 hours per batch, SCA- Library -1 hour, Sports- 2hours, Creative Activity-2 hours

indicates Self, on- line learning Mode through MOOCs/Spoken Tutorials /NPTEL/SWAYAM/FOSSEE etc.

Department Coordinator, Curriculum Development, Dept. of Mechanical Engineering Head of Department Dept. of Mechanical Engineering In-Charge Curriculum Development Cell Principal

Programme : Diploma in Mechanical Engineering (Sandwich Pattern)										
Course Code: ME19405 Course Title: Tool Eng					l Engine	ering				
Compulsory / Optional: Optional										
Teachin	ng Sche	eme and	l Credits	Examination Scheme						
L	Р	TU	Total	TH (2 Hrs 30 min)	TS1 (1 Hr)	TS2 (1Hr)	PR	OR	TW	Total
3	2	-	5	60	20	20	-	-	25	125

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination Note: For Minimum passing marks under various heads, refer, examination rule AR 26.

Rationale:

Engineering Manufacturing industry uses conventional machining processes on large scale. Technicians/ supervisors are required to possess knowledge and skills regarding selection of tooling & their geometry, selection of machining parameters, design or use of jigs, fixtures and press tools. The accuracy and economy of machining depends on the application of appropriate machining strategies.

In this context, the mechanical engineering diploma student must be well versed with tool materials, tool geometry, coolants, principles of jig/ fixtures design, press tool design etc. Also the student can find out specialized career option in the field of tool engineering.

Hence it is apt to study this course with the objective to develop the competency of selection of appropriate tooling.

Course Outcomes: Student should be able to

	THE AND A REAL A REAL AND A REAL AND A REAL AND A						
CO1	Select appropriate tool materials and cutting fluids						
CO2	Apply basics of theory of metal cutting for given conditions						
CO3	Choose proper tool geometry for single point cutting tools, twist drills, reamers and milling						
	cutters						
CO4	Design and use press tools for various operations						
CO5	Develop and use the jigs and fixtures for given components						
CO6	Develop basic features of forging die for given simple component						

Course Content Details:

No	Topics / Sub-topics									
	Tool Materials & Cutting Fluid	s								
	1.1 Need to develop newer tool materials, Desired properties of tool materials, Tool materials, their									
	composition, and applications- HSS, Cemented Carbides, Coated carbides, Cast alloy tools,									
	Ceramics, Cermets, CBN, Diamond									
1	 1.2 Heat zones in metal cutting, Desired properties of cutting fluids, Functions of cutting fluids, Type of cutting fluids, Factors considered in selection of cutting fluids, Cutting fluid maintenance Methods of applications of coolants, mist as coolant, MQL, Dry machining Environmental issue with cutting fluids. 									
	Course Outcome: CO1	Teaching Hours: 06	Marks:10(R-2, U-4, A-4)							
Unit No	Topics / Sub-topics									
------------	--									
2	 Theory of Metal Cutting 2.1 Parameters: Speed, feed, depth of cut, Types of chips and factors responsible for formation, Concepts of Orthogonal & Oblique cutting, Chip thickness ratio, determination of shear angle, shear stress, Graphical determination of velocities in orthogonal cutting, 2.2 Forces in orthogonal cutting, Merchant's Circle construction and graphical estimation of various forces, angle of friction 2.3 Tool wear, types of tool wear, Tool life definition, Taylor's Equation of tool life, factors affecting tool life/ tool wear 2.4 Machinability: Definition, factors affecting machinability, Machinability Index, Surface finish & accuracy possible with various machining processes Course Outcome: CO2 Teaching Hours:08 Marks:10(R-2, U-4, A-4) 									
3	Course Outcome: CO2 Teaching Hourstoo Marksto(R 2, C 4, H 4) Cutting Tool Geometry 3.1 Tool geometry of single point cutting (SPC) tool, definitions and functions of various tool angles, Tool signature, Classification of SPC tools, Design of single point cutting tool, surface finish generated by SPC tool, Designation code of carbide inserts 3.2 Milling Cutter: Elements and Tool geometry of plain milling cutter, up milling, down milling, specifications of milling cutters 3.3 Twist Drills & Reamers: Elements & geometry of twist drill and reamer, specifications of drills & reamers 3.4 Various types of tool holders Course Outcome: CO3 Teaching Hours:06									
4	Press Tool Design4.1 Sheet metal operations, Shearing, Clearance between die and punch, angular clearance, Calculation of blanking force and estimation of press capacity for blanking, Method of reducing punching force by providing shear on die and punch, Elements of press tools & their functions, Types of press tools- Simple, Progressive, compound, combination, scrap stripe layout for 									
5	Jigs & Fixtures Design5.1 Definition of Jig, fixture, Need and advantages, Parts of jigs/ fixtures, Considerations in Jig/ fixture design, Principles of Location, Locating elements, tolerance on locating elements, Use of diamond pin locator, Principles of clamping, clamping elements, Indexing elements, Fool proofing of jigs and fixtures5.2 Drill Jig types, Types of bushes, Development of jig for given component operation, clearances on bush,5.3 Types of fixtures, Development of fixture for given component operation 5.4 Introduction to Jigs/ fixtures for Aerospace industry, fluidized bed fixtures, modular fixtures 5.5 History cards for all types of cutting tools, dies and J & F for maintenance & regrindsCourse Outcome:CO5Teaching Hours:10Marks:10(R-2, U-4, A-4)									

Unit No	Topics / Sub-topics						
	Forging Die Design						
	6.1 Types of forging, Advantages and limitations of forging, Applications						
	6.2 Types of forging dies, Constructional features of forging dies, materials for forging dies						
6	6.3 Factors considered in design of forging dies						
	6.4 Types of Impressions in drop forging dies, Graphical method for developing edging impression						
	6.5 Development of simple forging die for drop forging and upset forging						
	Course Outcome:CO6 Teaching Hours:05 Marks:10(R-2, U-4, A-4)						

Level of questions: R: Remember, U: Understand, A: Apply

Unit		Distri	bution of Theory Marks			
No	Topic Title	R Level	U Level	A Level	Total Marks	
1	Tool Materials & Cutting Fluids	2	4	4	10	
2	Theory of Metal Cutting	2	4	4	10	
3	Cutting Tool Geometry	2	4	4	10	
4	Press Tool Design	2	4	4	10	
5	Jigs & Fixtures Design	2	4	4	10	
6	Forging Die Design	2	4	4	10	
	Total	12	24	24	60	

List of experiments/ Assignments:

Sr.	Unit	COs	Title of the Experiments/ Assignment	Hours
No.	No			
1	1	CO1	Determination of cutting fluid mixture composition and architecture	2
			of cutting fluid handling system of the machine tool	
2	2	CO2	Graphical estimation of forces & velocities in metal cutting	2
3	3	CO3	Design of Single Point Cutting Tool and SPC tool grinding	4
4	4	CO4	Development of scrap stripe layout (Group Activity)	4
5	4	CO4	Design of simple blanking die (Press Tool) (Group Activity)	4
6	5	CO5	Development of Drilling Jig (Group Activity)	4
7	5	CO5	Development of Fixture (Group Activity)	4
8	6	CO6	Development of drop/ upset forging die for given component (Group Activity)	4
9	4	CO4	Evaluation of drawability of sheet metal by Erichsen Cupping test	2

Sr. No.	Unit No	COs	Title of the Experiments/ Assignment	Hours
10	4	CO4	Design of Drawing Die (Group Activity)	2
		Total		30

Note: For group activities, size of group should be 3-4 students. Experiments No. 1 to 8 are compulsory, Minimum 09 experiments/ assignments shall be completed. Remaining experiments are to be performed as per importance of the topic/ availability of time. Teacher may arrange the industry visit/ expert lecture as instructional strategy.

References/ Books:

Sr.	Title	Author, Publisher, Edition and	ISBN
No.		Year Of publication	
1	Tool Engineering & Design	Nagpal G. R.; Khanna Publishers,	978-8174-0920-38
		6 th Ed, 2006	
2	Tool Design	Cyril Donaldson, George H	978-0070-1539-29
		Lecaine, VC Goold, McGraw Hill	
		Education; 4 th Ed, 2012	
3	A Text Book of Production	978-8121-9011-16	
	Engineering	2009	
4	Manufacturing Technology, Vol 2,	P. N. Rao, Tata McGraw-Hill	978-1259-0625-75
	Metal cutting and machine tools		
5	Jigs and Fixtures	P. H. Joshi, Tata McGraw Hill, 3 rd	978-1259-0612-26
		Ed, 2010	
6	Production Technology	HMT, McGraw Hill Education,	978-0070-9644-33
		2017	

E-References:

- 1. https://www.youtube.com/watch?v=DGlJs7YhVcw
- 2. https://www.youtube.com/watch?v=7MkX-sW97rI
- 3. http://astakhov.tripod.com/MC/Cutting-Fluids.pdf
- 4. https://universe.bits-pilani.ac.in/uploads/4%20metal%20cutting.pdf
- 5. https://uni.edu/~rao/Mfg%20Tooling%20-10%20Prog%20Tools-2.pdf
- 6. http://staff.uny.ac.id/sites/default/files/pendidikan/aan-ardian-mpd/1g-handbook-die-design-2nd-edition.pdf
- 7. https://nptel.ac.in/content/storage2/courses/112105127/pdf/LM-33.pdf

CO Vs PO and CO Vs PSO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	3	3	3	3	2	3	3	3	3
CO2	3	2	2	3	2	2	3	2	2
CO3	3	3	3	3	3	2	3	3	3
CO4	3	3	2	3	3	3	2	3	3
CO5	3	3	3	3	3	3	3	3	3
CO6	3	1	2	3	3	3	3	3	2

Sr.	Name	Designation	Institute/Organisation
No			
1	Shri. Uday Kudtarkar	Sr. DGM (Tool Engineering)	L&T Ltd, Powai
2	Shri. Samir B. Shah	Director	Emkey Fastners, Thane
3	Shri. Pratap Paldhe	Director	Micrograde Tools, Ambarnath
4	Shri. S. T. Patil	Director	Friends Engineering, Pune
5	Mr. Hitesh Vaishnav	Assistant Professor	Fr. Conceicao Rodrigues
			College of Engineering, Bandra
6	Dr. V. P. Rathod	Lecturer in Mechanical	Government Polytechnic,
		Engineering	Ratnagiri
7	Dr. Ketan Jagtap	Lecturer in Mechanical	Government Polytechnic,
		Engineering	Vikramgad
8	Shri. U.A. Agnihotri	Lecturer in Mechanical	Government Polytechnic,
		Engineering	Mumbai
9	Dr. V.U.Rathod	Lecturer in Mechanical	Government Polytechnic,
		Engineering	Mumbai
		A POLYTECH	

Industry Consultation Committee

Coordinator,

Head of Department

Department of Mechanical Engineering

Curriculum Development,

Department of Mechanical Engineering

I/C, Curriculum Development Cell

Principal

1960

ESTD

S KNOWLEDG

Tool Engineering (ME19405)

Program	Programme : Diploma in Mechanical Engineering (Sandwich Pattern)									
Course	Course Code: ME19406 Course Title: Industrial Maintenance									
Compul	Compulsory / Optional: Optional									
Teachin	Teaching Scheme and Credits Examination Scheme									
L	Р	TU	Total	TH (2 Hrs 30 min)	TS1 (1 Hr)	TS2 (1Hr)	PR	OR	TW	Total
3	2		5	60	20	20			25	125

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination

Note: For Minimum passing marks under various heads, refer, examination rule AR 26.

Rationale:

Maintenance is one of the important functions in any type of industry. Also every mechanical engineer should be aware of basic principles of maintenance and maintenance management. With the advancements in manufacturing processes, machine tools and other service sectors, the employment opportunities in the field of maintenance are increasing.

This course in industrial maintenance provides the opportunity to students to get familiar with the maintenance procedures of simple mechanical systems/ components, basics of maintenance management and new approaches like TPM, 5S.

Course Outcomes: Student should be able to

CO1	Describe basic terminology in maintenance practices
CO2	Describe & select appropriate maintenance strategy for given equipment
CO3	Describe basics of TPM & 5S
CO4	Describe the procedure for the maintenance of given mechanical systems or components
CO5	Describe the spares management norms for maintenance and describe lubrication activities
CO6	Describe the documentation used in maintenance activities in industries.

Course Content Details:

Unit No	Topics / Sub-topics								
	Basics of Maintenance Engineering	Basics of Maintenance Engineering							
	1.1 Definition, Need & Importance of	of maintenance, basic termin	ology related to maintenance-						
	Mean time between failure (MTBF), mean time to repa	air (MTTR), Terotechnology,						
	Reliability								
1	1.2 Objectives and functions of mair	1.2 Objectives and functions of maintenance department, consequences of equipment failures							
	1.3 Costs of maintenance								
	1.4 Organizational structure for mai	1.4 Organizational structure for maintenance, skills required for maintenance activities							
	Course Outcome: CO1	Teaching Hrs: 06	Marks:06 (R-2, U-4, A-0)						
	Maintenance Systems/ Maintenance	Strategies							
2	2.1 Factors considered in deciding c	2.1 Factors considered in deciding criticality of equipment, Maintenance Plan Preparation,							
-			-						

Unit							
No	Topics / Sub-topics						
	 2.2 Maintenance strategies, their characteristics and applications: Break down/ corrective maintenance, Preventive maintenance, Condition based maintenance (CBM), Reliability based maintenance, equipments used for CBM 2.3 Equipment Life cycle- Bath Tub Curve and maintenance strategies, Factors considered in maintenance system design 2.4 Preparation of maintenance schedule for preventive maintenance, maintenance cycle, Preparing Check list for PM 						
	Course Outcome: CO2 Teaching Hrs :08 Marks:12 (R-4, U-4, A-4)						
	Total Productive Maintenance (TPM)						
	3.1 Philosophy of TPM, Six losses due to inferior maintenance, Concept of Autonomous						
	Maintenance						
3	3.2 Objectives and Benefits of TPM, Overall Equipment Efficiency (OEE)						
5	3.3 Stages of implementation of TPM, Pillars of TPM						
	3.4 5S & its implementation						
	$C_{1} = C_{1} = C_{1$						
	Course Outcome: CO3 Teaching Hrs:07 Marks:08(R-2, U-4, A-2)						
	4.1 Maintenance of hearings clutches couplings flexible drives gears & gear drives shafts						
	4.2 Maintenance of Pumps, Air Compressors, Condensers						
	4.3 Maintenance of Pneumatic systems: Common problems in pneumatic systems, Maintenance						
	schedule of pneumatic systems						
4	4.4 Maintenance of hydraulic Systems: Common problems in hydraulic systems, Maintenance						
	schedule of hydraulic systems						
	4.5 Maintenance of Conveyors, Overhead Hoists, cranes						
	4.6 Safety in maintenance activities, Energy saving through planned Maintenance						
	Course Outcome: CO4 Teaching Hrs:12 Marks:16 (R-4, U-8, A-4)						
	Spares Management & Lubrication						
	5.1 Classification of spares, norms for stock, stock of electrical spares,						
5	5.2 Lubrication, different methods of lubrication						
	5.3 Lubricants, function of Lubricant, Properties of Lubricant, Types of Lubricant						
	Course Outcome: CO5Teaching Hrs:06Marks:10 (R-4,U-4,A-2)						
	Documentation for maintenance Activities						
6	6.1 Maintenance requisition Procedure, Work order, work permit system						
U U	6.2 Maintenance Manual, History Cards, Defect analysis, Down time analysis						
	Course Outcome: CO6 Teaching Hrs: 06 Marks:08 (R-0, U-4, A-4)						

Level of questions: R: Remember, U: Understand, A: Apply

Unit		Distribution of Theory Marks					
No	Topic Title	R Level	U Level	A Level	Total Marks		
1	Basics of Maintenance Engineering	2	4	-	6		
2	Maintenance systems/ Maintenance strategies	4	4	4	12		
3	Total Productive Maintenance	2	4	2	8		
4	Maintenance of mechanical systems and components	4	8	4	16		
5	Spare management and lubrication	4	4	2	10		
6	Documentation for maintenance activities	-	4	4	8		
	Total	16	28	16	60		

List of experiments/ Assignments:

Sr.	Unit	COs	Title of the Experiments/ Assignment	Hours
No.	No		Store and States	
1	1	CO1	Assignment on basics of maintenance engineering	2
2	2	CO2	Preparation of check list for preventive maintenance for assigned equipment/ machine in workshop or laboratory	4
3	3	CO3	Assignment on TPM/ Assignment on 5S	4
4	4	CO4	Performance of maintenance activity for assigned equipment/ machine (Group activity) & preparation of activity report	4
5	5	CO5	Preparation of lubrication schedule for assigned equipment/ machine and its implementation during term	4
6	6	CO6	Assignment on documentation for maintenance activities	2
7	1-6	CO1-	Mini Project on assigned maintenance related activity in the group of	4
		CO6	four students [students to work throughout term and present work]	
8	1-6	CO1-	Expert lecture by maintenance professional or visit to maintenance	2
		CO6	department in industry	
9	2	CO2	Condition based maintenance- using the equipments for measurement of signatures	4
10	4	CO4	Performance of maintenance activities on pneumatic systems	4
11	4	CO4	Performance of maintenance activities on hydraulic systems	4
		Total		30

Note: Experiments No. 1 to 8 are compulsory, Minimum 10 experiments/ assignments shall be performed.

References /	Books:
iterer enecos	DOOLD

Sr.	Title	Author, Publisher, Edition and	ISBN
No.		Year Of publication	
1	Maintenance and spare parts	P. Gopalkrishnan, A. K. Banerji,	978-8120-3066-91
	management	Prentice Hall of India, 2 nd Ed; 2004	
2	Principles and practice of Total	Bikash Bhadury, Allied Publishers	978-8170-2380-58
	Productive Maintenance	Ltd, 1 st Ed; 1998	
3	Pneumatic Systems Principles and	S.R. Mujumdar, Tata McGraw Hill	978-0074-6023-17
	Maintenance	Publishing Company Ltd, 1 st Ed;	
		1995	
4	Maintenance Fundamentals	R. Keith Mobley, Elsevier	978-0750-6779-81
		Butterworth–Heinemann, 2 nd Ed.,	
		2004	
5	Industrial Maintenance	H P Garg, S Chand & company,3rd	978-8121-9016-80
		Ed., 1987	
6	Plant maintenance engineering	R K Jain, Khanna publications, 2 nd	978-8174-0929-46
		Ed; 2018	
7	Maintenance engineering and	R.C. Mishra and K Pathak, Prentice	978-8120-3457-37
	management	Hall of India Pvt. Ltd, New Delhi,	
		12 th Ed; 2004	
8	Total productive maintenance	K. S. Madhavan, Shingo institute of	978-8190-6715-52
	100	Japanese management, 1 st Ed; 2014	
9	Engineering maintenance- A	B. S. Dhillon, CRC Press, 1 st Ed;	978-1587-1614-21
	modern approach	2002	

E-References:

1. https://www.licensedelectrician.com/Store/Maintenance.htm

1

- 2. <u>https://www.youtube.com/watch?v=f58SW0Hwcf0</u>
- 3. <u>https://www.youtube.com/watch?v=6Zh8_x17qhI</u>
- 4. https://www.youtube.com/watch?v=foq43sPPmMo
- 5. https://easyengineering.net/me6012-maintenance-engineering/
- 6. <u>www.sasurieengg.com/e-course-material/MECH/IV-</u> Year%20Sem%208/ME2037%20ME.pdf
- 7. https://www.coursehero.com/file/46869813/ME6012-ME-Complete-Notespdf/

CO Vs PO and CO Vs PSO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	2	1	2	1	2	1	3	2	1
CO2	2	2	3	2	2	2	3	2	2
CO3	3	2	3	3	2	2	3	3	2
CO4	3	2	3	3	2	2	3	3	2
CO5	3	3	3	2	3	2	3	3	2
CO6	3	3	3	2	3	2	3	3	2

Industry Consultation Committee

Sr.	Name	Designation	Institute/Organisation
No			
1	Mr. Jawale S. M.	Ex. General Manager	Godrej & Boyce Mfg. Co. Pvt.
			Ltd. Mumbai
2	Mr. Sachin Khalkar	Deputy Manager	Mahindra & Mahindra Ltd;
			Nashik
3	Mr. Yogesh Gaidhani	Head of Department, Mechanical	K K Wagh Polytechnic,
		Engineering	Nashik
4	Mr. Gajanan Gore	Lecturer in Mechanical Engineering	Government Polytechnic,
			Jalna
5	Mr. K. Z. Dhangare	Lecturer in Mechanical Engineering	Government Polytechnic,
			Mumbai
6	Miss. A. R. Hagawane	Lecturer in Mechanical Engineering	Government Polytechnic,
			Mumbai

Coordinator,

Head of Department

Department of Mechanical Engineering

Curriculum Development,

Department of Mechanical Engineering

I/C, Curriculum Development Cell

Principal

ESTD. 1960

G KNOWLED

Programme : Diploma in Mechanical Engineering (Sandwich Pattern)										
Course Code:ME19407				Course T	itle: Invo	entory C	ontrol			
Compulsory / Optional: Optional										
Teaching Scheme and Credits						Exa	mination	Scheme		
L	Р	TU	Total	TH (2 Hrs 30min)	TS1 (1 Hr)	TS2 (1Hr)	PR	OR	TW	Total
3	2	-	5	60	20	20	-	-	25	125

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination Note: For Minimum passing marks under various heads, refer, examination rule AR 26.

Rationale:

Engineering Manufacturing industry uses numerous types of inventories. Technicians/ supervisors are required to possess knowledge and skills regarding monitoring and controlling the inventories as inventories have direct impact on economics of manufacturing and continuity of manufacturing. Any person working in industry must be sensitive about inventory levels, their role in manufacturing, especially in modern manufacturing strategies like just in time systems.

In this context, the mechanical engineering diploma student must be well versed with techniques of inventory control, store operations, 5S etc. Also the student can find out specialized career option in the field of materials management, stores and purchase department.

Hence it is apt to study this course with the objective to develop the competency of selection of appropriate techniques of inventory control.

Course Outcomes: Student should be able to

CO1	Identify inventories and estimate EOQ/ EMQ
CO2	Apply the techniques of selective inventory control
CO3	Select appropriate replenishment system
CO4	Identify and apply control measures for WIP and basic understanding of ERP working
CO5	Apply procedures of stores activities
CO6	Apply Monte Carlo method of simulation for inventory management, 5S technique

Course Content Details:

Unit No	Торіс	s / Sub-topics	
1	 Basics of Inventory Control 1.1 Need and objectives of Inventory operational effects of over and ur Types of inventories, Seasonal, D for inventory control 1.2 Various costs associated with Inventory 1.3 Economic Order Quantity (EOQ), discounts 	Control, Symptoms of Poor In Ider inventory levels, Definition Decoupling, pipeline Inventorie entory Carrying Cost, Procure Economic Manufacturing Qu	eventory control, Financial and ons: Inventory, Lead Time, es, Need of integrated approach ement Cost, Set-up Cost, antity (EMQ), with and without
	Course Outcome: CO1	Teaching Hours: 08	Marks: 10 (R-2, U-4, A-4)

Unit No	То	pics / Sub-topics				
	Selective Control of Inventories					
	2.1 ABC Analysis: Objective & Procedure					
	2.2 XYZ Analysis: Objective & Procedure					
2	2.3 FSN Analysis: Objective & Pr	ocedure				
	2.4 VED Analysis: Objective & P	rocedure				
	2.5 Deciding strategy for control u	using combining ABC & XYZ	and XYZ –FSN classification			
	Course Outcome: CO2	Teaching Hours: 07	Marks: 10 (R-2, U-4, A-4)			
	Replenishment Systems					
	3.1 Elements of Lead Time, Facto	rs affecting Lead time, Safety S	Stock, Need and factors affecting			
	safety stock,					
	3.2 Elements of Replenishment Sy	stem: Reorder Quantity, Reord	er Level, minimum level stock,			
2	Lead time consumption, Maxi	imum stock, minimum stock, av	verage inventory, Need for periodic			
3	review of replenishment syste	m parameters				
	3.3 Fixed order quantity system, f	eatures, working, parameters, L	imitations, suitability,			
	Modification (Two Bin system	n)				
	3.4 Fixed-Order – Interval System, parameters, suitability, modification with fixed order quantity					
	Course Outcome: CO3	Teaching Hours:08	Marks:10 (R-2, U-2, A-6)			
	Inventory Control of Work in P	rocess (WIP) & ERP				
	4.1 Reasons for WIPs, Effects of 1	ncreased WIP, factors influence	ing quantity of WIP, Manufacturing			
	Cycle Efficiency	Din Tele Detale anna Davara	C. Aning			
4	4.2 Strategies for reduction in WIP in Job, Batch, mass, Process manufacturing					
	4.5 Kole of line manager in controlling wiP 4.4 Estemping Decourse Dispute (EDD) Concert Nucl. Listing and the set					
	4.4 Enterprise Resource Planning (ERP) - Concept, Need, objectives, modules, advantages &					
	Limitations of ERP	T 1' II 07				
	Course Outcome: CO4	Teaching Hours:07	Marks: 10 (R-2, U-4, A-4)			
	Store procedures and management					
	5.2 Procedures for Materials receipt. Inspection. Issue record keeping interrelation with materials					
5	management department					
	5.3 Stock Verification: Need, Rea	sons for deviation between physical	sical stocks and documented stock,			
	Methods of stock verification	: Annual stock taking, Continu	ous stock taking, Re-order point			
	stock taking	Toophing Hours:07	Marks, 10 (D 4 U 6 A Nil)			
	Simulation and 58	reaching flours.07	warks. 10 (R-4, U-0,A-NII)			
	6.1 Monte Carlo Method applied t	o inventory problems				
6	6.2 Elements of 5S method, types	of wastes, need, Implementatio	on requirements			
U	6.3 Recycling & reuse					
	Course Outcome: COC	Taaahing Hauwa.00	Mantres 10 (D 2 U 2 A C)			
	Course Outcome: COb	reaching Hours:08	IVIARKS: IU (K-2, U-2, A-6)			

Level of questions: R: Remember, U: Understand, A: Apply

Unit		Distribution of Theory Marks					
No	Topic Title	R Level	U Level	A Level	Total Marks		
1	Basics of Inventory Control	2	4	4	10		
2	Selective Control of Inventories	2	4	4	10		
3	Replenishment Systems	2	2	6	10		
4	Inventory Control of Work in Process (WIP) & ERP	2	4	4	10		
5	Store procedures and management	4	6	-	10		
6	Simulation, 5S	2	2	6	10		
	Total	14	22	24	60		

List of experiments: All practical/assignments are compulsory

Sr. No	Unit No	COs	Title of the Assignments/Experiments	Hours
1	1	CO1	Case Studies on EOO and EMO Estimation	04
-	-	001		01
2	2	CO2	Case Studies on Selective Inventory Control	04
3	3	CO3	Case studies on Replenishment Systems	04
4	4	CO4	Case studies on Work in Process	04
5	5	CO5	Assignment on functioning of Industrial Stores and documentation	04
6	6	CO6	Case studies on use of Simulation in formulating Inventory Control problems	04
7	1	CO1-6	Mini Project (Group Activity)	02
			Teacher to identify topics and assign topics to self formed groups	
8	2	CO4	Hands-on on Inventory control module of any free ERP software or	04
			Development of excel sheet for given requirements of a small enterprise	
			for Inventory control	
		Total		30

References/ Books:

Sr.	Title	Author, Publisher, Edition and	ISBN
No.		Year Of publication	
1	Inventory Management	L. C. Jhamb, Everest Publishing House, 18 th Ed, 2005	978-8186-3145-48
2	Materials Management: An integrated approach	P. Gopalkrishnan, M. Sundaresan, PHI Learning Pvt. Ltd. 33 rd Ed, 2011	978-8120-3002-79
3	Purchasing And Inventory Management	K. S Menon , Sarika Kulkarni, Shroff Publishers; 1 st Ed, 2011	978-8184-0470-66
4	Computer-Aided Production Management	P. B. Mahapatra, Prentice-Hall of India Pvt.Ltd, Ed, 2004	978-8120-3174-20

5	Operations Management for	Richard B. Chase, F. Robert Jacobs,	978-0070-6044-83
	competitive advantage	Nicholas J. Aquilano, Nitin K.	
		Agarwal, Tata McGraw Hill, 11 th Ed,	
		2006	

E-References:

- 1. https://nptel.ac.in/courses/110105095/
- 2. ancer.com.tw/attachments/367_ErpBook(7).pdf
- 3. https://afifnurichwan.files.wordpress.com/2015/06/inventory-control-and-management-second-edition.pdf
- 4. https://www.iibms.org/wpcontent/uploads/2015/05/essentials_of_inventory_management.pdf

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	3	3	2	-	2	2	3	2	2
CO2	3	2	2	3	3	2	2	2	2
CO3	3	3	2	3	2	2	2	2	2
CO4	3	2	2	3	2	2	2	2	2
CO5	3	2	- 3	166 M	3	2	3	2	2
CO6	3	81	3	2	2	2		2	2

CO Vs PO and CO Vs PSO Mapping

Industry Consultation Committee:

Sr.	Name	Designation	Institute/Organisation
No	2	ESTD. 1960	
1	Mrs. Manisha Talreja,	CEO	Vapcon Mfg. Engineers,
		Mr. Star	Palghar
2	Mr. D.B. Jadhav	Head, Melting	Mahindra & Mahindra Ltd,
		AVOINTEDGE	Kandivali
3	Mr. Pravin R. Dhole	Manager	S.M. Auto Engineering Pvt.
			Ltd. Pune
4	Dr. V. P. Rathod	Lecturer in Mechanical Engineering	Govt. Polytechnic, Ratnagiri
5	Dr. H.P. Khairnar	Associate Professor	VJTI, Mumbai
6	U.A. Agnihotri	Lecturer in Mechanical Engineering	Govt. Polytechnic Mumbai
7	Dr. V. U. Rathod	Lecturer in Mechanical Engineering	Govt. Polytechnic Mumbai

Coordinator,

Curriculum Development,

Department of Mechanical Engineering

Head of Department Department of Mechanical Engineering

I/C, Curriculum Development Cell

Principal

Programme : Diploma in Mechanical Engineering (Sandwich Pattern)										
Course Code:ME19310				Course Title: Metrology & Quality Control						
Compul	Compulsory / Optional: Compulsory									
Teaching Scheme and Credits						Exa	mination	Scheme		
L	Р	TU	Total	TH (2 Hrs 30min)	TS1 (1 Hr)	TS2 (1Hr)	PR	OR	TW	Total
3	2	-	5	60	20	20	25*	-	25	150

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination Note: For Minimum passing marks under various heads, refer, examination rule AR 26.

Rationale:

Engineering industry uses variety of manufacturing processes. and processing different engineering materials, metals as well as non-metals. Mechanical engineering technicians require knowing the different types of measuring instrument to be used in variety of situation. While working in different domains of mechanical engineering, technicians shall possess the competence to select appropriate measuring instruments and quality control tools for required applications productively.

In this context, the mechanical engineering diploma student must be well versed with different types of measuring instrument to be used in variety of situations. Also the student is required to have hands on learning experience on different types of measuring instruments.

In the present global competitive scenario, an industry can only survive and flourish when its customers are satisfied. This satisfaction comes with quality product and services. This course imparts necessary knowledge so that students can perform the job of quality control supervisor effectively.

Hence it is apt to study this course with the objective to develop the competency of selection, use and applications of measuring instruments and various quality control tools.

CO1	Describe the terminology related with metrology and calibration requirements
CO2	Select and use of suitable measuring instruments for linear measurement and describe
	construction, working and applications of comparators.
CO3	Use instruments for angle measurement and thread measurement.
CO4	Interpret tolerances, fits and design Go-No Go gauges from given data and perform
	machine tool alignment testing
CO5	Select and use of suitable measuring instruments for surface roughness and flatness
CO6	Describe the elements of Quality management, TQM, Six Sigma and apply the technique
	of statistical quality control, acceptance sampling and estimation of process capability

Course Outcomes: Student should be able to

Course Content Details:

Unit No	Topics / Sub-topics					
	Basics of Engineering Metrology					
1	 1.1 Disciplines of Metrology: Scientific metrology, industrial metrology and Legal Metrology, Measuring characteristics of instruments & their significance: Least count, range, precision, accuracy, repeatability, sensitivity 1.2 Traceability and calibration: Need of Calibration, General requirements for the competence of testing and calibration laboratories (as per ISO 17025 - 2017 and NABL-129 related with dimensional metrology, Types and Sources of errors in measurement, concept of uncertainty 1.3 Types of standards: Line standard, End standard and wavelength standard, their comparison. 					
	Course Outcome: CO1Teaching Hours: 06Marks: 10 (R-2, U-4, A-4)					
2	Linear measurement and Comparators2.1 Basic Measuring Instruments: Principle, construction and application/operation of Vernier calipers, Micrometer, Height gauge, Feeler gauges, Radius gauges, Screw pitch gauges, Slip gauges: specification, wringing and combination, Applications of slip gauges2.2 Definition and Classification of comparators, requirements of good comparator2.3 Working and applications of comparators: Dial indicator, Sigma comparator, Pneumatic ComparatorCourse Outcome: CO2Teaching Hours: 06Marks: 10 (R-2, U-4, A-4)Angular Measurement and Thread Measurement					
3	 3.1 Concept of angle measurements, Working and use of universal bevel Protractor, Sine Bar, Sine Centre, Sine table and Spirit Level 3.2 Principle and Working of Clinometers, Angle dekkor, Angle Gauges: combination for setting required angle 3.3 Definitions and measurement of different thread elements such as major diameter, minor diameter, effective diameter, pitch for external threads 3.4 Construction, working and use of Thread Micrometer, floating carriage micrometer, Errors in threads, Pitch errors 					
	Gauge Design and Machine Tool Testing					
4	 4.1 Concept of Limits, Fits, And Tolerances, interchangeability, Hole and Shaft Basis System (IS-919-1993), Tolerance staking: worst scenario method and SD method 4.2 Classification of gauges, Taylor's Principle for gauge design, Design of Go-No Go Gauges from given data 4.3 Concept of Parallelism, Straightness, Squareness, Roundness, Run out 4.4 Alignment Test: Significance of alignment tests, Tools required, Procedure of alignment tests for Lathe, milling machine and drilling machine as per IS standard 					
	Course Outcome: CO4Teaching Hours:07Marks: 10 (R-2, U-4, A-4)					

Unit No	Topics / Sub-topics							
	Surface Roughness, Flatness Testing and Modern Metrology							
	5.1 Terminology as per 15 3073- 1967, , CLA, Ra, RMS values and their interpretation,							
	5.2 Various techniques of qualitative analysis							
5	5.5 Tarysull roughness tester: construction and working							
5	5.5 Introduction to laser metrology							
	5.6 Coordinate measuring machines (CMM). Construction working and industrial							
	applications.							
	Course Outcome: CO5Teaching Hours:05Marks: 10 (R-2, U-4, A-4)							
	Quality Tools and Quality Management							
	6.1 Definitions of quality and quality control, Quality characteristics, Quality of design,							
	Quality of conformance, Quality of performance, Quality cost & its components, Comparison							
	between Quality assurance and Quality Control, Inspection: Need, Types of inspection.							
	Inspection stages,							
	6.2 Principles and concept of Total Quantity Management, Quality Audit, and its type, Six sigma							
	quality standards							
	6.3 Statistical Quality Control: Significance of SOC Variables and attributes. Population							
	and sample. Causes of variation assignable and random variations. Normal distribution							
6	curve.							
	6.4 Control charts: Plotting of Control charts for variables (X & R charts), control charts for							
	attributes (P, C charts), selection of appropriate type of chart. Process capability:							
	estimation (Cp & Cpk), interpretation: Statistically capable and in capable processes.							
	6.5 Acceptance Sampling: Concept of sampling inspection. Comparison with 100%							
	inspection, Different types of sampling plans, IS 4905-1968, working of various							
	sampling plans, factors affecting on selection of sampling plan, Operating							
	Characteristic Curve. consumer's risk and producer's risk							
	Course Outcome: CO6 Teaching Hours:14 Marks: 10 (R-2. U-4. A-4)							

Level of questions: R: Remember, U: Understand, A: Apply

Unit		Distri	bution of	Theory	Marks			
No	Topic Title	R Level	U Level	Theory A A A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Total Marks			
1	Basics of Engineering Metrology	2	4	4	10			
2	Linear measurement and Comparators	2	4	4	10			
3	Angular Measurement and Thread Measurement	2	4	4	10			
4	Gauge Design and Machine Tool Testing	2	4	4	10			
5	Surface Roughness, Flatness Testing and Modern Metrology	2	4	4	10			
6	Quality Tools and Quality Management	2	4	4	10			
	Total	12	24	24	60			
List of	ist of experiments:							

List of experiments:

Sr. No.	Unit No	COs	Title of the Assignments/Experiments	Hours
1	-	-	Know your laboratory (Safety, care and maintenance)	2
2	1,2	CO1, CO2	Calibration Procedure for Vernier Caliper and Micrometer	2
3	2	CO2	Use of basic measuring instruments: Surface plate, V-block, feeler gauge, radius gauge, thread gauge and height gauge	2
4	2	CO2	Inspection of components using Pneumatic comparator	2
5	2	CO2	Use of dial indicator as mechanical comparator	2
6	3	CO3	Angle measurement using Sine bar	2
7	3	CO3	To measure major diameter, minor diameter, effective diameter, using floating carriage diameter measuring machine/thread micrometer.	2
8	3	CO3	To measure major diameter, minor diameter, pith, depth of thread and thread angle using profile projector/ Tool Maker's Microscope	2
9	4	CO4	Assignment on Gauge Design	2
10	4	CO4	Alignment testing on center lathe / drilling machine	2
11	5	CO5	Surface flatness characterization using optical flats	2
12	6	CO6	Construct X,R chart and interpret the results/ Plotting of control chart for variables	2
13	6	CO6	Construct P/C- chart and interpret the results/ Plotting of control chart for attributes	2
14	6	CO6	Sampling Inspection	2
		Total		30

Note: Any 11 experiments covering all COs

References/ Books:

Sr.	Title	Author, Publisher, Edition and	ISBN
No.		Year Of publication	
1	Engineering Metrology	R. K. Jain, Khanna Publisher, Delhi, 22 nd Ed; 2015	978-8189-4012-69
2	Text Book of Metrology	M. Mahajan, Dhanpat Rai & Co; 4 th Ed, 2012	978-8177-0005-11
3	Text Book of Metrology	I.C. Gupta, Dhanpat Rai & Co; 4 th Ed, 2018	978-8189-9284-52
4	Statistical Quality Control	M. Mahajan, Dhanpat Rai & Co.4 th Ed, 2016	978-8177-0006-58
5	Statistical Quality Control	Douglas C Montgomery, Students' Resource Manual, Wiley India Pvt. Ltd. 5 th Ed; 2002	978-0471-6781-06
6	Total Quality Management	Dale H. Besterfield and others, Pearson, Revised Ed, 2011	978-0130-9930-69

E-References:

- 1. boltdepot.com>fastners>information>measuring
- 2. mahr.com/ear/tester
- 3. yourarticlelibrary/metrology/types of comparator
- 4. openoregan.pressbook.pub>manufacturing process
- 5. investopedia.com
- 6. support.minitab.com>en.os>acceptance sampling
- 7. iti.nist.gov.div898>handbook
- 8. <u>www.mitutoyo.co.jp</u>
- 9. www.nabl-india.org
- 10. bis.gov.in

CO Vs PO and CO Vs PSO Mapping

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	3	3	3	2	3	2	2	3	3
CO2	3	2	3	3	3	3	3	2	2
CO3	3	3	3	3	3	3	3	2	2
CO4	3	3	2	3	3	2	3	3	3
CO5	3	2	2	2	2	2	2	2	2
CO6	3	3	3	3	2	2	2	2	2

ESTD. 1960

Sr.	Name	Designation	Institute/Organisation		
No					
1	Mr. Malvankar Pundalik	Director	Sacardande Engg. Pvt. Ltd.,		
			Navi Mumbai		
2	Mr. Mohanish Puralkar	Manager, R & D	Miles Ahead Tech Pvt. Ltd		
			Mumbai		
3	Mr. Rao V. B.	Assistant Professor	Fr. CR. College of Engg		
			Mumbai		
4	Mr. Moizuddin M.	Lecturer in Mech. Engg.	M.H.S.S. Polytechnic,		
			Mumbai		
5	Mr. Joshi S. V.	Lecturer in Mech. Engg.	Government Polytechnic,		
			Mumbai		
6	Mr. Ansari N. N.	Lecturer in Mech. Engg.	Government Polytechnic,		
			Mumbai		

Industry Consultation Committee:

Coordinator,

Head of Department

Curriculum Development,

Department of Mechanical Engineering

Department of Mechanical Engineering

I/C, Curriculum Development Cell

Principal

EST

Ð

KNOWLED

1960

Program	Programme: Diploma in Mechanical Engineering (Sandwich Pattern)									
Course	Code: N	AE 193	05	Course Title: CNC Machines & Automation						
Compul	Compulsory / Optional: Compulsory									
Tead	ching S Cree	cheme dits	and	Examination Scheme						
L	Р	TU	Total	TH (2Hrs 30 min)	TS1 (1Hr)	TS2 (1Hr)	PR	OR	TW	Total
3	2		5	60	20	20			25	125

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination

Note: For Minimum passing marks under various heads, refer, examination rule AR26. Two practical skill tests are to be conducted. First skill test at midterm and second skill test at the end of the term.

Rational:

In Recent years, the manufacturing environment has undergone dramatic changes. For achieving market of goals, it is essential to produce quality parts in less time. Intervention of information technology in manufacturing has great impact on manufacturing techniques. The strategic requirements such as minimum lead time and high quality cannot be met without the adaption of computerized numerical control (CNC) technology. CNC machines normally are not limited to machine tools only but realm of CNC has widened in almost all areas of manufacturing processes and support activities. It is therefore very important for Mechanical diploma engineer's to master CNC technology.

In this course learner can develop skills required for programming, selection of tooling etc for CNC machine.

CO1	Identity different axes, machine zero, home position, systems and controls CNC machines
CO2	Select, mount and set cutting tools and tool holders on CNC.
CO2	Prepare part programming using ISO format for given simple components with and without
COS	use of MACRO, CANNED CYCLE and SUBROUTINE using ISO format.
CO4	Describe working principle Automatic Tool Changing device
CO5	Apply maintenance practices for CNC machines.
CO 6	Describe the different components of automated system.

Course Outcomes: At the end of the course student will be able to:

Course Content Details:

Unit No	T	opics / Sub-topics	
110	Introduction to CNC Machine	es	
1	 1.1 Classification of CNC machin 1.2 Important terms related to C 1.3 Calibration of CNC machines 1.4 Axis standards and its identi 1.5 Drives used in CNC system 1.6 Construction and working of 1.7 Feedback, measurement & co Course Outcome:CO1 	es ENC machining fication F CNC Machines orrection System Teaching Hours:06	Marks: 08 (R-4, U-4, A-0)
	Constructional features and w	vorking of CNC Machines	
2	 2.1 Bed and machine frame const 2.2 Spindle constructional detail 2.3 Constructional details and w 2.4 Various spindle drives used i 2.5 working of machine control i 2.6 Types of lubrication system 2.7 working of swarf removal ar 2.8 Working of hydraulic and proceed of the control is in the control in the control in the control is in the control in the control in the control is in the control in the control in the control is in the control in the control in the control is in the control in the contr	struction sorking of ball screw and L. M .gu in CNC machines unit rangement eumatic systems used for Chuck Teaching Hours: 08	hide ways x, tool and pallet changing in Marks:14 (R-4, U-6, A-4)
	CNC Part Programming		
3	 3.1 NC words , G codes M code 3.2 Programming format, word 3.3 Tool offset and tool wears c 3.4 Part programming containing 3.5 Introduction to Macro Progr Course Outcome: CO3 	es statement, block format compensation ng subroutines, Do-loops and ca ramming Teaching Hours: 10	nned cycle Marks: 12 (R-2, U-4, A-6)
	Tooling for CNC machines		· ·
4	 4.1 Introduction 4.2 Types of CNC Cutting tools 4.3 Types of indexable inserts w 4.4 Construction of tool holding 4.5 Tool presetting procedure 4.6 Working of Automatic Tool O 4.7 Safety procedure, alarms, foo 4.8 Online measurement of dimensional servers 4.9 Fixtures used in CNC machine 	ith it geometry assembly Changing (ATC) device and types ol-proof procedures ensions, cutting forces, Adaptive ees.	s of tool magazine controls, communication with
	Course Outcome:CO4	Teaching Hours: 08	Marks:12 (R-2, U-4, A-6)

 ${\tt Page}2$

Unit No	Торіс	es / Sub-topics							
	Common Problems in CNC Mac	hines							
5	5.1 Common problems In mechanical, electrical, pneumatic, electronic and PC components of NC machines								
	5.2 Diagnostic study of common pro	blems and remedies							
	5.3 Use of on-time fault finding diag	5.3 Use of on-time fault finding diagnosis tools in CNC machines.							
	Course Outcome: CO5	Teaching Hours:08	Marks:06(R-2, U-0,A-4)						
	Industrial Automation								
6	 6.1 Meaning of Automation 6.2 Need of Automation 6.3 Types of Automation 6.4 Advantages and Disadvantages of Automation 6.5 Components of Automated system 								
	6.6 Introduction to Plant Automatio	n & Introduction to Industry	4.0						
	Course Outcome: CO6	Teaching Hours:08	Marks:06 (R-2, U-2, A-4)						

Suggested Specifications Table (Theory): Level of questions: R: Remember, U: Understand, A: Apply

Unit	5 24	Distribution of Theory Marks					
No	Topic Title	R Level	U Level	A Level	Total Marks		
1	Introduction to CNC machines	4	4	-	8		
2	Constructional features and working of CNC machines	4	6	4	14		
3	CNC part programming	S ²	4	6	12		
4	Tooling for CNC machines	2	4	6	12		
5	Common Problems in CNC machines	2	-	4	6		
6	Industrial Automation	2	2	4	8		
	Total	16	20	24	60		

List of Experiments: Minimum 10 experiments out of 12 experiments

Sr. No.	Unit No	COs	Title of the Experiments	Hours
1	1	CO1	Study the constructional details of CNC lathe	2
2	1	CO1	Study the constructional details of CNC milling machine	2
3	2	CO2	Study the constructional details and working of-i)Automatic tool changer and tool setterii)Multiple palletsiii)Swarf removaliv)Safety Devices	2

Sr.	Unit	COs	Title of the Experiments	Hours
INO.	INO			
4	2	CO2	Use of software for turning operations on CNC turning center	2
5	2	CO2	Use of software for milling operations on milling center	2
6	3	CO3	Develop a part programme for following lathe operations and makethe job on CNC lathe-i)Plain turning & facing operationii)Taper turning operationsiii)Thread cutting operationsiv)Operation along contour using circular interpolation.	4
7	3	CO3	Develop a part programme for following milling operations and make the job on CNC milling machine- i) Plain milling ii) Slot milling iii) Pocket milling	4
8	3	CO3	Preparation of work instructions for machine operator while working on CNC machine	2
9	4	CO4	Study of CNC Cutting tools & Tool presetting procedure	2
10	5	CO5	Preparation of preventive maintenance schedule for CNC machines	4
11	6	CO6	Demonstration through Industrial visit for awareness of Industrial Automation.	2
12	2	CO2	Visit to CNC machine (production) shop to observe construction and working of CNC machining center/ CNC machines. Write visit report.	2
		Total	ESTD. 1960	30

References/ Books

Sr.	Title	Author, Publisher, Edition and	ISBN
No.		Year Of publication	
1	Mechatronics & Machine Tools	HMT, Bangalore, McGraw-Hill, International Ed, 1998	978-0071-3463-44
2	CNC Machines	Pabla B.S.& MAdithan, New age International Ltd. 4 th Ed, 2018	978-8122-4342-62
3	CAD/CAM (Computer Added Design & Manufacturing)	Groover, Zimmer, Pearson Education India, 1 st Ed, 2006	978-8177-5841-65
5	CAD/CAM/CAE	Chougule N.K., SciTech publication Pvt Ltd. 1 st Ed, 2010	978-8183-7117-53
6	CNC Programming Made Easy	Binit Kumar Jha, Vikas Publication House Pvt.1 Ld. New Delhi, Revised edition, 2010.	978-8125-9118-07

E-References:

Page4

- <u>https://nptel.ac.in/courses/112/105/112105211/</u>
- https://youtu.be/eJ432X2dR9A

- <u>https://swayam.gov.in/nd1_noc19_me46/preview</u>
- <u>https://youth.be/il28Fz69E80</u>

CO Vs PO and CO Vs PSO Mapping:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	2	1	1	3	1	2	2	2	3
CO2	3	2	2	3	1	2	3	2	3
CO3	2	3	2	2	1	2	3	1	3
CO4	2	3	2	3	1	2	3	2	3
CO5	2	1	1	3	1	2	2	2	3
CO6	3	2	2	3	1	2	3	2	3

Industry Consultation Committee:

Sr. No	Name	Designation	Institute/Organisation
1	Mr. Dharme G.S.	Workshop Superintendent	Agnel Polytechnic, Bandra, Mumbai
2	Mr. Mane M.A.	Assistant Professor	Suman Ramesh Tulsiani Technical Campus Kamshet, Pune
3	Mr.Raut N.N.	Deputy General Manager- Oprations	Sunrise Industries (India) Limited, Vadodara, Gujrat
4	Mr.Joshi S.V.	Lecturer in Mechanical Engineering	Government Polytechnic, Mumbai
5	Mr. Ansari N.N.	Lecturer in Mechanical Engineering	Government Polytechnic, Mumbai
6	Mr. Jamnik Y.B.	Lecturer in Mechanical Engineering	Government Polytechnic, Mumbai

Coordinator, Curriculum Development, Department of Mechanical Engineering Head of Department Department of Mechanical Engineering

I/C, Curriculum Development Cell

Principal

Program	Programme: Diploma in Mechanical Engineering (Sandwich Pattern)									
Course	Code: N	/IE1930)2	Course Title: Industrial Hydraulics and Pneumatics						
Compul	Compulsory / Optional: Compulsory									
Teachin	ng Sche	me and	l Credits	Examination Scheme						
L	Р	TU	Total	TH (2 Hrs 30 min)	TS1 (1 Hr)	TS2 (1Hr)	PR	OR	TW	Total
3	2		5	60	20	20			25	125

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination Note: For Minimum passing marks under various heads, refer, examination rule AR26. Two practical skill test are to be conducted. First skill test at midterm and second skill test at the end of the term

Rationale:

Hydraulic and pneumatic operated machines and equipment are widely used in various industries due to its versatility adaptability to automation. Mechanical engineering technologist are required to maintain such systems in different segments of industries. This competency needs the knowledge of construction and working of different components of hydraulic and pneumatic systems.

This course will give the students the basic skills and knowledge to use and maintain different types hydraulic systems and pneumatic systems.

Course Outcomes: Student should be able to

CO1	Identify various components of hydraulic and pneumatic systems.
CO2	Select pump and other accessories for oil operated system.
CO3	Select control valves and actuators for given fluid operated system.
CO4	Select compressor and other component for air operated system.
CO5	Develop different hydraulic circuits for given application
CO6	Develop different pneumatic circuits for given application

Course Content Details:

Unit No	Topics / Sub-topics							
	Introduction to Hydraulic and	Pneumatic systems						
	1.1. General layout of Oil Hydra 1.2. Practical applications of Hy	ulic system. draulic system						
	1.3. Merits and limitations of Hy	1.3. Merits and limitations of Hydraulic system.						
1	1.4. ISO symbols used in Hydrau 1.5. General layout of Pneumatic	ulic system.						
	1.6. Practical applications of Pneumatic system.							
	1.7. Merits and limitations of Pneumatic system.							
	1.8. ISO symbols used in Pneum	atic system.						
	Course Outcome: CO1	Teaching Hrs:04	Marks: 08 (R-2, U-4, A-2)					

Page 1

	Pumps and Accessories in Hydr	aulic system			
2	 2.1. Pump: Classification of Pumpump, Piston pump 2.2. Accessories: Oil reservoir, pheat exchangers 2.3. Types of hydraulic oils us 	p, Construction and working of C ipes, hoses, fittings, oil filters, sea ed in hydraulic systems and the	Gear pump, Vane pump, Screw als and gaskets, accumulators, eir specifications		
	Course Outcome: CO2	Teaching Hrs:06	Marks: 10 (R-4, U-4, A-2)		
3	 3.1. Classification of Control V 3.2. Pressure Control Valves: Oreducing valve, Unloading 3.3. Direction Control Valve: Oreducing valve, Unloading 3.4. Flow Control Valves: Variation of Valves: Variation Valve, 3.5. Classification of Hydraulion Rotary actuators Course Outcome: CO3 	Valves Construction and working of Press valve. Check valve, 2/2, 3/2, 4/2, 4/3, 5/2 s system. able flow control valve Pressure e and Pneumatic actuators, Constr Teaching Hrs:10	sure relief valve, Pressure 2, 5/3 DC valve used in compensated, Non compensated ruction and working of Linear and Marks: 10 (R-4, U-4, A-2)		
	Compressor and Pneumatic Co	mponents			
4	 4.1. Types, Construction, working principle of Reciprocating and Rotary compressor 4.2. Construction, working principle of FRL unit, Dual (Twin) pressure valve, Shuttle valve, Quick exhaust valve, Time delay valve 				
	Course Outcome: CO4	Teaching Hrs: 08	Marks:10 (R-4, U-4, A-2)		
5	 Oil Hydraulic Circuits 5.1. Simple oil Hydraulic circu 5.2. Speed control- Meter in, M 5.3. Regenerative, Synchronizi 5.4. Hydraulic circuit for Millin 5.5. Remedies and fault detection 	its- Single and Double acting hyd leter out, Bleed off circuit. ng, Sequencing circuits. ng machine, Shaper machine, Gri on in Hydraulic circuits	draulic cylinders, motors		
	Course Outcome: CO5	Teaching Hrs: 09	Marks: 12 (R-2, U-4, A-6)		
6	 Pneumatic Circuits 6.1. Direct and indirect control 6.2. Speed control circuit for cy 6.3. Sequencing circuits 6.4. Remedies and fault detect 	of Single Acting and Double Act ylinders and motors tion in Pneumatic circuits	ting air cylinders, Motors		

Level of questions: R: Remember, U: Understand, A: Apply

ENT

Unit		Distribution of Theory Marks					
No	Topic Title	R Level	U Level	A Level	Total Marks		
1	Introduction to Hydraulic and Pneumatic systems	02	04	02	08		
2	Pumps and Accessories in Hydraulic system	04	04	02	10		
3	Control Valves and Actuators	04	04	02	10		
4	Compressor and Pneumatic Components	04	04	02	10		
5	Oil Hydraulic Circuits	02	04	06	12		
6	Pneumatic Circuits	02	02	06	10		
	Total	18	22	20	60		

List of experiments:

Sr. No.	Unit No	COs	Title of the Experiments	Hours
1	1	CO1	Identify components of Hydraulic system.	02
2	1	CO1	Identify components of Pneumatic system.	02
3	1	CO1	List and draw symbols used in hydraulic system.	02
4	1	CO1	List and draw symbols used in pneumatic system.	02
5	2	CO2	Use Pump and other components mounted on hydraulic trainer kit	02
6	3	CO3	Use of control valve and actuators in hydraulics and pneumatics	02
7	4	CO4	Use of compressors, FRL unit and accessories in pneumatics	02
8	5	CO5	Assemble & actuate meter in, meter out hydraulic circuit	04
9	5	CO5	Develop circuit for simple machine tool application such as milling machine, shaper machine, grinding machine	02
10	5	CO5	Assemble & actuate sequencing hydraulic circuit	04
11	6	CO6	Construct and actuate speed control pneumatic circuits	02
12	6	CO6	Develop any suitable pneumatic sequencing circuit	04
	Total			30

Sr. No.	Title	Author, Publisher, Edition and Year Of publication	ISBN
1	Oil Hydraulic system-	Majumdar S.R. McGraw Hill, New	978-0071-4066-97
	principles and maintenance	Delhi, 7 th Ed; 2002	
2	Pneumatic Systems principles and maintenance	S.R. Mujumdar, Tata McGraw Hill Publishing Company Ltd, 1 st Ed., 1995	978-0074-6023-17
3	Fluid Power with applications	Esposito, Anthony, Pearson Education Inc, New Delhi , 7th Ed., 2008	978-0135-1369-04
4	Hydraulics and Pneumatics	Stewart, Harry, Taraporewala Publication, 1 st Ed., 1984	978-0672-2341-25
5	Pneumatic Controls	Joji B, Wiley India Publication, New Delhi, 1 st Ed., 2008	978-8126-5154-24
6	Hydraulics and Pneumatics A Technicians and Engineers Guide	Parr, Andrew Butterworth-Heinemann Publisher, 3rd Ed.,2011	978-0080-9667-48
7	Industrial Hydraulics Manual	Vickers Systems International, Eaton Hydraulics, (Training Manual) 2 nd Ed; 2006	978-0963-4162-09

References/ Books:

E-References:

- 1. Hydraulic Pumps: <u>https://en.wikipedia.org/wiki/Hydraulic_pump</u>
- 2. Hydraulic Pumps: <u>www.hydraulicspneumatics.com/...HydraulicPumpsM/.../TechZOne-HydraulicPumps</u>.
- 3. Animation of Hydraulic pumps: <u>https://www.youtube.com/watch?v=Qy1iV6EzNHg</u>
- 4. Animation of Hydraulic pumps: <u>https://www.youtube.com/watch?v=pWuxYnqYDnk</u>
- 5. Pneumatic control valves animation: https://www.youtube.com/watch?v=XAItnsUcES0
- 6. Control valve symbol generation: <u>https://www.youtube.com/watch?v=yIot4shcOkE</u>
- 7. Animation of DC valve: <u>https://www.youtube.com/watch?v=jsMJbJQkGTs</u>
- 8. Animation of 4/2, 4/3 DC valve: https://www.youtube.com/watch?v=CQPwvWXbV3w
- 9. Animation of Hydraulic cylinder: <u>https://www.youtube.com/watch?v=bovfDsAYSbc</u>
- 10. Pneumatic cylinder: https://www.youtube.com/watch?v=MmYpzgh6Gok
- 11. Speed control hydraulic circuit: <u>https://www.youtube.com/watch?v=4eCuPVxezzY</u>
- 12. Telescopic cylinder animation: <u>https://www.youtube.com/watch?v=icaqvfAtccY</u>

CO Vs PO and CO Vs PSO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	2	1	2	1	2	1	3	2	1
CO2	2	3	3	2	2	2	3	3	2
CO3	3	3	3	3	2	2	3	3	2
CO4	3	3	3	3	2	2	3	3	2
CO5	3	3	3	2	3	2	3	3	3
CO6	3	3	3	2	3	2	3	3	3

Industry Consultation Committee:

Sr.	Name	Designation	Institute/Organisation
No			
1	Mr. Sachin Khalkar	Deputy Manager	Mahindra & Mahindra Ltd;
			Nashik
2	Mr. Tushar Mestry	Deputy Manager Production	Jurchen Technology India Pvt.
			Ltd; Boiser
3	Mr. Yogesh Gaidhani	Head of Department	K K Wagh Polytechnic,
			Nashik
4	Mr. Kiran B. Salumkhe	Lecturer in Mechanical Engineering	Government Polytechnic,
			Thane
5	Mr. K. Z. Dhangare	Lecturer in Mechanical Engineering	Government Polytechnic,
			Mumbai
6	Miss. A. R. Hagawane	Lecturer in Mechanical Engineering	Government Polytechnic,
			Mumbai

Coordinator,

Head of Department

Curriculum Development,

Department of Mechanical Engineering

Department of Mechanical Engineering

I/C, Curriculum Development Cell

Principal

EST

Ð

G KNOWLED

1960

Program	Programme : Diploma in Mechanical Engineering (Sandwich Pattern)									
Course Code: ME19311				Course T	itle: Des	ign of M	lachine E	lements		
Compul	Compulsory / Optional: Compulsory									
Teaching Scheme and Credits Examination Scheme										
L	Р	TU	Total	TH (3 Hrs 30 min)	TS1 (1 Hr 30 min)	TS2 (1Hr 30 min)	PR	OR	TW	Total
3	2		5	60	20	20			25	125

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination Note: For Minimum passing marks under various heads, refer, examination rule AR26. Two practical skill test are to be conducted. First skill test at midterm and second skill test at the end of the term

Rationale:

Design of Machine Elements is an applied technology subject. This course needs essential fundamental knowledge of Applied Mechanics, Strength of Materials, Engineering Materials, Machine Drawing and Theory of Machines. A diploma holder in mechanical discipline is expected to design and draw simple machine components used in industries.

This course aims for developing analytical abilities to give solutions to engineering design problems.

Course Outcomes: Student should be able to-

CO1	Define basic concepts in design, Factor of safety and Theories of failures.
CO2	Prepare design for eccentric loading, joints, levers and offset links
CO3	Design keys, shafts and couplings
CO4	Design of bolts for brackets and welded joints
CO5	Design power screws
CO6	Design of helical springs.

Course Content Details:

Unit No	Topics / Sub-topics
	Introduction to Design of Machine Elements
	1.1. Basic Design Considerations: Design philosophy and Procedures, General Considerations
	in design, Types of loads, concepts of stress ,strain, Stress – Strain Diagram for Ductile and
	Brittle Materials, True Stress-Strain $$ and Engineering stress strain diagram , Types of
1	Stresses such as Tension, Compression, Shear, Bending, Crushing and Bearing pressure,
	Concept of Creep, Fatigue, S-N curve, Endurance Limit
	1.2. Factors of Safety and Material Designation: Factor of Safety and Factors affecting its
	selection, Stress Concentration – Causes & Remedies, Converting actual load or torque into
	design load/torque using design factors, Designation of materials as per IS and

Unit No	Topics / Sub-topics
	 introduction to International standards, advantages of standardization, use of design data book and use of standards in design 1.3. Variable stresses: Fluctuating stresses, fatigue, fatigue failure,, S-N curve, Endurance limit, stress concentration and its remedies 1.4. Theories of Elastic Failures: Principal normal stress theory, Maximum shear stress theory & maximum distortion energy theory 1.5. Modern design considerations, Ergonomic and Aesthetic consideration and concept of product design Course Outcome: CO1
	Design of Joints and Offset links
2	 2.1. Design of Cotter Joint, Knuckle Joint and Design of bell crank lever 2.2. Design of Off-set links, C – Clamp, Overhang Crank
	Course Outcome: CO2Teaching Hours:07Marks: 10 (R-0, U-4, A-6)
3	 3.1. Design of Keys and Shaft: Design of Rectangular, parallel sunk keys, Effect of Keyways on strength of shaft. Types of Shafts, Shaft materials, Standard Sizes, Design of shafts (Hollow and Solid) using strength and rigidity criteria, ASME code of design for line shafts supported between bearings with one or two pulleys in between or one overhung pulley. 3.2. Design of Couplings: Protected type Flanged coupling and Bush-pin type flexible coupling.
	Design of threaded and welded joints
4	 4.1. Stresses in Screwed fasteners, bolts of Uniform Strength. 4.2. Design of Bolted Joints for brackets when the load is parallel and perpendicular to the axis of the bolt considering axial and eccentric loading 4.3. Design of parallel and transverse fillet welds, axially loaded symmetrical sections. ASME codes for welded joints
	Course Outcome: CO4 Teaching Hours: 07 Marks: 10 (R-2, U-4, A-4)
5	 Design of Power Screws 5.1. Basic concepts: Thread Profiles used for power Screws, relative merits and demerits of each, Self-locking and overhauling property, Torque required to overcome thread friction, efficiency of power screws, types of stresses induced. 5.2. Design of Screw Jack.
	Course Outcome: CO5 Teaching Hours: 07 Marks: 10 (R-4, U-0, A-6)
6	 6.1. Classification and Applications of Springs, Spring - terminology, materials specifications. Stresses in springs, Wahl's correction factor, Deflection of springs, Energy stored in springs, construction and application of Leaf spring.

Uni No	t	Topics / Sub-topics						
	6.2.	6.2. Design of Helical tension and compression springs subjected to uniform applied loads						
		like I.C. engine valves, weighing balance, railway buffers and governor springs.						
	6.3.	6.3. Design of leaf spring without considering prestressing for the leaves						
	Cou	rse Outcome: CO6	Teaching Hours: 08	Marks: 10 (R-4, U-0, A-6)				

Level of questions: R: Remember, U: Understand, A: Apply

Unit		Distribution of Theory Marks						
No	Topic Title	R Level	U Level	A Level	Total Marks			
1	Introduction to Design	02	04	04	10			
2	Design of Joints, Levers and Offset links		04	06	10			
3	Design of Shafts, Keys and Couplings	04		06	10			
4	Design of threaded, welded joints and Introduction to Bearings	02	04	04	10			
5	Design of Power Screws	04		06	10			
6	Design of Springs	04		06	10			
	Total	16	12	32	60			
List of	ovnorimente:							

List of experiments:

Sr.	Unit	COs	Title of the Experiments	Hours
No.	No		2 ESTD. 1960 S	
1	1	CO1	Assignment based on Fundamental Design Concepts	02
2	2	CO2	Design of Knuckle/Cotter Joint/ Levers: Observe the system where transmission of reciprocating forces or static compression/tensile load takes place through the links of a mechanism. Get the required information regarding load transmitted. By selecting suitable materials from design data book, design the Knuckle/ Cotter/Turn Buckle/Levers. Prepare design report, details and assembly drawing indicating overall dimensions, tolerances, fits and surface finish. Also prepare bill of materials. (Activity should be completed in a group of maximum four students)	06
3	3	CO3	Design of Protected Type Rigid Flange/ Bushed Pin Type Flexible Coupling: Observe the system where transmission of power takes place through shaft, Keys, coupling, pulley and belt drive. Get the required information regarding power transmitted (power output by motor or engine etc.). By selecting suitable materials from design data book, design the coupling. Prepare design report, details and assembly drawing indicating overall dimensions, tolerances, fits and surface finish. Also prepare bill of materials. (Activity should be completed in a group of maximum four students)	06
4	3	CO3	Design of Stepped Solid/Hollow Shaft: Observe the system where transmission of power takes place through shaft, Keys, coupling, pulley and belt drive. Get the required information regarding power transmitted (power output by motor or engine etc.). By selecting suitable materials	04

Page**3**

Sr.	Unit No	COs	Title of the Experiments	Hours
110.	- NO	005	from design data book, design the Stepped solid/hollow shaft subjected to combined bending and torsional stresses. Prepare design report, indicating overall dimensions, tolerances, fits and surface finish. (Activity should be completed in a group of maximum four students)	
5	5	COS	Design of Screw Jack: Observe the System where transmission of power takes place through power Screws. (e.g. Lead screw of lathe, feed screws of machine tools, Clamping screws, Screw Jack.). Get the required information regarding effort, clamping force, etc., and selecting suitable materials from data book design screw, nut and different simple components in assembly. Prepare design report, details and assembly drawing indicating overall dimensions, tolerances, fits and surface finish. Also prepare bill of materials. (Activity should be completed in a group of maximum four students)	06
6	2/5	CO2 CO5	Prepare CAD Drawing for Practical No 2 or 5 in practical and print out of sheet should be attached.	02
7	4	CO4	Assignment based on design of welded joints and bolts.	02
8	6	CO6	Assignment on design of helical springs	02
		Total		30

Note: All the design sheets and assignments are compulsory.

References/ Books:

Sr	Title	Author Publisher Edition and	ISBN
No.	1110 10 11	Year Of publication	101011
1	A Text book of Machine Design	R S. Khurmi and J. K Gupta., S. Chand Publication, 34 th edition, 1979	978-8121-9253-72
2	Design of Machine Elements	V B. Bhandari, Tata Mc-Graw Hill Publication, 4 th Edition, 2016	978-9339-2211-26
3	Schaum's Outline of Machine Design	Alfred S. Hall, A. R. Holowenko, H. G. Laughlin, Tata Mc-Graw Hill Publication, 1 st Edition, 2007	978-0070-6345-89
4	Machine Design Data Book	V B Bhandari, Tata Mc-Graw Hill Publication, 2 nd Ed; 2019	978-9353-1663-04
5	Handbook of Mechanical Design	Gitin M. Maitra, L. V. Prasad, Tata Mc-Graw Hill Publication, Ed, 2001	978-0074-6023-86
6	Shigley's Mechanical Engineering Design	Richard G. Budynas, Keith J. Nisbett, Tata Mc-Graw Hill Publication, 11 th Ed, 2020	978-0073-3982-11
7	Machine Component Design	Robert C.Juvinall, Wiley India Edition	978-8126-5597-32
8	Design Data: Data Book of Engineers	Compiled by: Faculty of Mechanical Engineering, 8 th , Published by: Kalaikathir Achachgam, Coimbatoree	PSG College Technology Coimbatore

b) IS 2693: 1964 Cast Iron Flexible Couplings

d) IS 2293: 1963 Gib Head Keys & Keyways

f) IS 4694: 1968 Square threads

IS Codes

- a) IS 4218: 1967 ISO Metric Threads
- c) IS 2292: 1963 Taper keys & Keyways
- e) IS 2389: 1963 Bolts, Screws, Nuts & Lock Nuts
- g) IS 808: 1967 Structural Steel

E-References:

- 1. https://ndl.iitkgp.ac.in/
- 2. https://www.slideshare.net/anjanpatel1/design-of-springs
- 3. <u>https://www.pdfdrive.com/search?q=machine+design+theory&pagecount=&pubyear=&searchine</u>

CO Vs PO and CO Vs PSO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	2	2	2	2	2	2	3	2	2
CO2	2	3	3	2	2	2	3	3	2
CO3	3	3	3	2	2	2	3	3	2
CO4	3	3	3	2	2	2	3	3	2
CO5	3	3	3	2	2	2	3	3	2
CO6	3	3	3	2	2	2	3	3	2

Industry Consultation Committee:

Sr. No	Name	Designation	Institute/Organisation
1	Vinit Jawale,	Technical Specialist	John Deere Technology Center India, Cybercity, Magarpatta City, Hadapsar, Pune 411013
2	Mr. Saurabh Singh	Scientist/Engineer	Liquid Propulsion System Centre, I.S.R.O. LPSC resident office, C/o M/s Godrej & Boyce, Plant 16A, Vikhroli, Mumbai 400079
3	Mr. K V Patil, ,	Sr. Lecturer	Government Polytechnic Thane, Near Phadke Pada,khardi Gaon,Mumbra,Thane.
4	Mr. Prashant K Ambadekar	Assistant Professor	SIES Graduate School of Technology, Sri Chandrasekarendra Saraswati Vidyapuram, Plot 1C-E, Sector V, Nerul, Navi Mumbai – 400 706.
5	Dr Sunil B Mahagaonkar,	Sr. Lecturer	Government Polytechnic Mumbai,49, Ali Yavar Jung Marg, Kherwadi, Bandra East, Mumbai, Maharashtra 400051
6	Dr. Avinash A Lonkar	Sr. Lecturer	Government Polytechnic Mumbai,49, Ali Yavar Jung Marg, Kherwadi, Bandra East, Mumbai, Maharashtra 400051

Coordinator,	Head of Department
Curriculum Development,	Department of Mechanical Engineering
Department of Mechanical Engineering	

I/C, Curriculum Development Cell

Principal

Progra	Programme : Diploma in Mechanical Engineering (Sandwich Pattern)									
Course Code: ME19303				Course Title	e: Solid Mo	deling				
Comp	Compulsory / Optional: Compulsory									
Teaching Scheme and Credits				Exar	nination Sch	neme				
L	Р	TU	Total	TH (2 Hrs 30min)	TS1 (1 Hr)	TS2 (1Hr)	PR	OR	TW	Total
	4		4				25*		25	50

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination.

Note: For Minimum passing marks under various heads, refer, examination rule AR 26. Two practical skill test are to be conducted. First skill test at mid term and second skill test at the end of the term

1012111-14

Rationale:

Manufacturing industries have to design, develop, and manufacture the products in minimum possible time, at economical rate, and mainly without negotiating on the quality aspects, to sustain in competitive market. Hence, design and production department has to work together in an integrated approach. An application of computer in design, development, and manufacturing has created the way for highly flexible, accurate and fast integrated approach in manufacturing the parts. The process begins with conceptualizing the machine components and assemblies in automobiles, machine tools, and earth movers etc. as 3D models, making application of solid modeling software as a need of time in industries. In this context, the mechanical engineering diploma student must be well conversant with use of different features of solid modeling software. Students are also required to know the fundamentals of computer aided manufacturing. This course deals with the concept of solid modeling to enhance the solid modeling skills of the diploma engineering students. This course will enable the students to inculcate solid modeling concepts to solve engineering problems.

CO1	Create and Constraint 2D sketches
CO2	Generate 3D models of machine components
CO3	Prepare assembly of 3D modelled components.
CO4	Create 3D surface models
CO5	Generate orthographic views/ drawings of models / assemblies.
CO6	Simulate tool path and create NC files

Page

Course Content Details:

Unit No	Topics / Sub-topics					
INO	Introduction & 2D Skatching					
1	 1.1 Introduction & 2D Sketching 1.1 Introduction, Need of solid modeling, Different software's for Solid Modeling, Applications, Benefits. 1.2 Getting familiar with User Interface, Navigation tools, Drawing Units 1.3 Print setup, Layout preparation, 1.4 Making basic sketches- rectangle, circle etc., making polygons, circular/rectangular sketch patterns, 1.5 Modifying 2D sketches using trim, extend, offset etc. Geometrical constraints, 1.6 Export the drawing in dxf/ dwg,/ svg,/ pdf formats , and Print /Plot the drawings 					
	3D Modeling					
2	 2.1 3D modeling using extrude, revolve, sweep, etc. 2.2 Modifying 3D models by fillet, chamfer, use of rectangular and circular patterns, move, copy etc. Boolean operation : union, subtract, intersection 2.3 Making construction /reference planes 2.4 Modeling of simple machine components, such as spur gear, 3D spanner, nut bolts, pipe Joints, bearings, couplings, brackets, tools etc. 2.5 Export model in IGES/ STEP/ STL/dxf/ dwg,/ svg,/ pdf formats, and Print /Plot the 3D models Course outcome : CO2 					
	Assembly Modeling					
3	 3.1 3D Modeling of assembly components (Assembly should have minimum three components like screw jack, bearings, tails stock, pipe vice, tool holders, couplings, pipe joints etc.) 3.2 Joints/constraints in Assembly, 3.2 Assembly motion, 3.3 Exploded view of assembly 3.3 Export assembly in IGES/ STEP/ STL/dxf/ dwg,/ svg,/ pdf formats & Print /Plot the Assembly 					
	Course outcome : CO3					
4	 Surface Modeling 4.1 Introduction, Creating free form surfaces 4.2 Creating free form surface models like water bottle, flower pot, heating iron, detergent bottle, soap case etc. 4.3 Export model IGES/ STEP/ STL/dxf/ dwg,/ svg,/ pdf formats, and Print /Plot the surface model. Course outcome : CO4 					
5	Drafting					
5	6.1 Generate 2D drawings from 3D models					
	6.2 Insert base view, projected views - front view, top view, side view,					
	6.3 Drafting of Assemblies					
	6.4 Dimensioning,					
	6.5 Bill of material for assemblies					

 ${}^{\rm Page} 2$
	6.6 Export drawing in IGES/ STEP/ STL/dxf/ dwg,/ svg,/ pdf formats, and
	Print /Plot the drawing of model/ assemblies
	Course outcome : CO5
	Introduction to CAM
	7.1 Setup, Tool Manager, Drilling tool path, 2D tool path, simulate, setup
	sheets, post NC files
6	7.2 3D Printing, export to STL
	7.3 Print /Plot the tool path and NC files
	Course outcome : CO6

List of experiments:

Sr. No.	Unit No	COs	Title of the Experiments	Hours
			Lab Orientation & Safety Instructions	02
1	1	CO1	Introduction to Graphics User Interface, Demonstrate the use of navigating tools, sketching of 2D sketches and constraints. Prepare minimum four 2D sketches and printing/ plotting the drawings.	08
2	2	CO2	Demonstrate to prepare 3D models from 2D sketches involving use of extrude, revolve, sweep, etc. commands, and modify commands. Prepare minimum four 3D Models of machine components and printing / plotting the models.	10
3	3	CO3	Demonstration of assembling the 3D models, establishing the motion in components of assembly. Prepare an assembly from 3D modelled components, establish motion in assembly components, and printing/plotting an assembly.	06
4	3	CO3	Demonstration of creating exploded view of an assembly. Prepare exploded view of an assembly from prepared assembly and printing/plotting exploded view of an assembly.	04
5	4	CO4	Demonstration of creating free form surfaces such as water bottle, flower pot, heating iron, detergent bottle, soap case, table lamp etc. Prepare minimum four freeform surface models and printing / plotting the surface model.	08
6	5	CO5	Demonstration of creating drafting i.e. base view, projected views, sectional views, isometric views of models. Prepare the drafting of minimum four 3D models and printing / plotting the different views of 3D model.	04

Sr.	Unit	COs	Title of the Experiments	Hours
No.	No			
7	5	CO5	Demonstration of creating drafting i.e. base view, projected views,	06
			sectional views, isometric views of assembly, and bill of materials.	
			Prepare the drafting of minimum one assembly, bill of material	
			(BoM), and printing / plotting the different views of assembly.	
8	6	Co6	Demonstration for Computer Aided Manufacturing for machining of	08
			the given component.	
			Select the tool, and simulate tool path for machining of the	
			modelled component, and print / plot the tool path.	
9	6	CO6	Demonstration for Computer Aided Manufacturing for machining of	04
			the given component.	
			Generate the G codes for machining of the given component and	
			print / plot the codes.	
	-	Total	ST POLITECH	60

References/ Books:

1. User guides/ manual of Fusion 360 software

E-References:

- 1. <u>https://thesourcecad.com/fusion-360-tutorial/</u>
- 2. <u>https://academy.autodesk.com/node/125076/take?q-nr=4</u>

CO Vs PO and CO Vs PSO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	3	3	3	3 E) ²	3	3	3	3
CO2	3	3	2	3	3	3	3	3	3
CO3	3	3	3	3	2	3	3	3	2
CO4	3	3	2	3	2	3	3	3	3
CO5	3	3	2	3	2	3	3	3	3
CO6	3	3	2	3	2	3	3	3	3

960

Page4

Industry Consultation Committee:

Sr.	Name	Designation	Institute/Organisation
No			
1	Mr. Amit Gunjal	CEO	Milestone PLM Solutions,
			Thane
2	Mrs. Sameera	Managing Director	United Technologies, Virar
	Dhanawade Rawle		
3	Dr. Shirish Dhobe	Lecturer in Mech. Engg.	Government Polytechnic,
			Thane
4	Dr. Sandeep Anasane	Associate Professor	College of Engineering,
	_		Pune
5	Shri. U.A. Agnihotri	Lecturer in Mechanical	Government Polytechnic,
	(Curriculum Content	Engineering	Mumbai
	Designer)		
6	Dr. V. U. Rathod	Lecturer in Mechanical	Government Polytechnic,
	(Curriculum Content	Engineering	Mumbai
	Designer)		

1111

 ∂q

8] A

Coordinator,

Head of Department

Curriculum Development, Department of Mechanical Engineering Department of Mechanical Engineering

KNOWLEDG

I/C, Curriculum Development Cell Principal

Programme: Diploma in Mechanical Engineering (Sandwich Pattern)										
Course Code: ME19308				Course Title: Project						
Compulsory / Optional: Compulsory										
Teaching Scheme and Credits Examination Scheme										
L	Р	TU	Total	TH (2 Hrs 30 min)TS1 (1 Hr)TS2 (1 Hr)PRORTWTotal					Total	
	4		4					50*	50	100

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination Note: For Minimum passing marks under various heads, refer, examination rule AR26. Two practical skill test are to be conducted. First skill test at midterm and second skill test at the end of the term

Rationale:

Diploma technicians is expected to integrate and apply the theory and practical skills to solve the industrial issues. This requires the abilities for problem identification, definition and problem analysis, development of alternatives and implementation of solution. The comprehensive understanding of various courses studied and application of basics to derive solution need to be developed within technicians.

This course provides the opportunity for learners to solve the problem, using technical knowledge and skills gained during previous semesters. It also simulates the situation for team working, leading and self-motivation through work.

Course Outcomes: Student should be able to

CO1	Identify, Analyze and Define the problems.
CO2	Derive solutions to the problem and select most appropriate solution.
CO3	Use various information resources to collect information related to project idea.
CO4	Manage conflicts and work effectively in team.
CO5	Design, Develop, and Manufacture the machine/equipment.
CO6	Prepare project related documentation, communicate and present work done.

Course Content Details:

Unit No		Topics / Sub-topics
	Metho	dology:
1	1. 2. 3. 4. 5.	This course will be completed in the fifth semester. Course registration will be at the beginning of the fifth semester. A batch will be formed of maximum four students. A project dairy is to be maintained by each student giving details of planning, work executed, information collected etc. on weekly basis and the same should be shown to the guide concerned. Project report should be of about 50 to 70 pages of Times New Roman font. Font size of main heading, subheading and text should be 16, 14, 12 respectively. The report should consist of

	6. Batch formation, project identification, project selection, survey work, production of model,
	if any presentation should be completed during the fifth semester.
	Following is the suggestive list of topics for selection of project:
2	 A fabrication of small machine / test rig/ devices etc. Design and fabrication of mechanisms, machine and devices etc. Development of computer programming. Industry supported project. Literary based survey project. Investigative type project. Investigative type project. Industrial Engineering-based project Low cost automation project Creativity based engineering project Environment based project Market survey project Project in recent trends in mechanical engineering Appropriated technology related to rural areas
3	 Project Report preparation: Suggested contents of the Project Report (Guide can make required changes as per nature of project) Title page (with name of team members and mentor teacher) Certificate Acknowledgments Abstract Content page Chapter -1 Introduction & Project Definition Chapter -2 Literature survey Chapter-3 Project Planning Chapter-3 Design & Solid Modelling Chapter-4 Fabrication/ Manufacturing Chapter-5, Trials & Experimentation Chapter-7 conclusion and future scope Appendix (if any) References and Bibliography

Rubric 1: For	r Project Oral
---------------	----------------

Criterion No	Criterion	CO	Max Marks	Not Satisfactory	Satisfactory (5-6)	Good (7-8)	Excellent (9-10)
				(1-4)			
1	Literature survey	CO1 CO2 CO3	10	Information is gathered from a single source.	Information is gathered from a limited number of sources.	Information is gathered from multiple sources.	Information is gathered from multiple, research- based sources.
2	Organization of presentation	CO2	10	Audience cannot understand presentation because there is no sequence of information	Audience has difficulty following presentation because student jumps around.	Student presents information in logical sequence which audience can follow	Student presents information in logical, interesting sequence which audience can follow.
3	Graphics (use of PowerPoint)	CO4	10	Uses graphics that rarely support text and presentation	Uses graphics that relate to text and presentation	Uses graphics that explain text and presentation	Uses graphics that explain and reinforce text and presentation
4	Elocution and eye contact	CO2 CO4	10 ES ES	Mumbles and/or Incorrectly pronounces some terms/ Voice is low; difficult to hear Reads most slides, no or just occasional eye contact	Voice fluctuates from low to clear; difficult to hear at times Refers to slides to make points, occasional eye contact	Voice is clear with few fluctuations; audience can hear well most of the time Refers to slides to make points, eye contact majority of	Voice is clear and steady; audience can hear well at all times Refers to slides to make points, engaged with audience
5	Oral	CO1 CO2 CO3 CO4 CO5 CO6	10	Does not understands question /no answer to question	Answers some questions but not clearly and completely	time Answers to most of the questions clearly and completely	Answers to all questions confidently

Rubric 2: For Project TW

Criterion	Criterion	CO	Max	Not	Satisfactory	Good	Excellent
No			Marks	Satisfactory		(= 0)	(0.10)
				(1-4)	(5-6)	(7-8)	(9-10)
1	Problem Identification	COI	10	Little or no background information is presented to help the audience understand the history and significance of the project.	Background information is provided, an explanation of why the project was undertaken, to help put the presentation in context.	Background information is provided, including references to the work of others and an explanation of why the project was undertaken, to help put the presentation in context.	Insightful and in-depth background information is provided to illuminate the issues through inclusion of history relevant to the presentation, a succinct description of the significance of the project.
2	Literature Review	CO1 CO2	10	Very few and not relevant	Few and relevant	Relevant information from multiple sources	Information is gathered from multiple, research-based sources.
3	Planning of Project Work And Team Structure	CO3 CO4	10	Time frame not properly specified, In- appropriate distribution of project work	Time frame properly specified, but not being followed, Distribution of project work un-even	Time frame properly specified and being followed Distribution of project work inappropriate	Time frame properly specified and being followed, Appropriate distribution of project work
4	Testing	CO5	10	Testing done not done properly , no correct method of testing	Testing done in single condition , required modification not done after testing	Testing done in multiple condition , required modification not done after testing	Testing demonstrates engineering skill , required modification done after testing
5	Project Report	CO6	10	Project report not prepared according to the specified format, References and citations are not appropriate.	Project report is according to the specified format but some mistakes In-sufficient references and citations	Project report is according to the specified format, References and citations are appropriate but not mentioned well	Project report is according to the specified format References and citations are appropriate and well mentioned

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	3	3	3	3	2	2	3	3	3
CO2	3	3	3	3	2	3	3	3	3
CO3	3	3	3	2	2	2	3	3	3
CO4	3	3	3	3	2	2	3	2	3
CO5	3	3	3	3	2	3	3	3	3
CO6	3	3	2	2	2	2	3	3	2

CO Vs PO and CO Vs PSO Mapping

Industry Consultation Committee:

Sr. No	Name	Designation	Institute/Organisation		
1	Mr. Gautam Patil	Deputy Manager Die Shop	Mahindra & Mahindra Ltd, Nashik		
2	Mr. Amit Khatale	Team Leader	Tata Technologies, Pune		
3	Mr. Yogesh Gaidhani	Head of Department	K K Wagh Polytechnic, Nashik		
4	Mr. Jayram Rathod	Lecturer in Mechanical Engineering	Government Residential Womens' Polytechnic, Nanded		
5	Mr. K. Z. Dhangare	Lecturer in Mechanical Engineering	Government Polytechnic, Mumbai		
6	Miss. A. R. Hagawane	Lecturer in Mechanical Engineering	Government Polytechnic, Mumbai		

WOWLEDGE

Coordinator,

Curriculum Development,

Head of Department Department of Mechanical Engineering

I/C, Curriculum Development Cell

Department of Mechanical Engineering

Principal

GOVERNMENT POLYTECHNIC MUMBAI

(Academically Autonomous Institute of Government of Maharashtra)

Department of Mechanical Engineering P19 Curriculum Sixth Semester

GOVERNMENT POLYTECHNIC MUMBAI

(Academically Autonomous Institute, Government of Maharashtra) Teaching and Examination Scheme (P19) With effect from AY 2019-20

Programme: Diploma in Mechanical Engineering (Sandwich Pattern)

	8	0\													
Course			Teaching Hours/Contact Hours			Contact		Examination Scheme (Marks)							
Course	Course Title						Credits		Theor	v		cheme (Marks) R OR TW Tota - 100* 100* 200 - 100 100 200			
Code			L	Р	TU	Total		TH	TS1	TS2	PR	OR	TW	Total	
ME19313	INPLANT TRAINING		1	40		40	20					100*	100*	200	
		Total		40		40	20					100	100	200	
Total Contact Hours															

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment) * Indicates assessment by External Examiner else internal practical skill test, #indicates self, on- line learning Mode, @ indicates on line examination Note: Duration of Examination--TS1&TS2 -1 hour, TH- 2 hours 30 min, PR/OR – 3 hours per batch, SCA- Library -1 hour, Sports- 2hours, Creative Activity-2 hours

KNOWLEDGE

indicates Self, on- line learning Mode through MOOCs/Spoken Tutorials /NPTEL/SWAYAM/FOSSEE etc.

Department Coordinator, Curriculum Development, Dept. of Mechanical Engineering Head of Department Dept. of Mechanical Engineering In-Charge Curriculum Development Cell Principal

Term / Semester -VI

Programme : Diploma in Mechanical Engineering (Sandwich Pattern)										
Course Code:ME19313				Course Title: INPLANT TRAINING						
Compulsory / Optional: Compulsory										
Teaching Scheme and Credits				Examination Scheme						
L	Р	TU	Total	TH (2 Hrs 30min)	TS1 (1 Hr)	TS2 (1Hr)	PR	OR	TW	Total
	40		20					100*	100*	200

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination Note: For Minimum passing marks under various heads, refer, examination rule AR26. Two practical skill tests are to be conducted. First skill test at mid-term and second skill test at the end of the term.

Rationale:

There will always be the need of talented, innovative, and skilled manpower for industries to sustain in competitive market. Industries adopt different policies to get the employable manpower as per the demand. In-plant training, internship, apprenticeship etc. are some of the useful strategies for generating future talent pool for the industry. These programs not only helps fresh pass outs in gaining professional knowhow but also benefits, industries on fresh perspectives on business issues and even discovering future business leaders. Students passing out from technical institutions lack the experience, skills and confidence required by industries. In present scenario competition for job is rising exponentially and securing entry-level jobs is getting very difficult. Hence organizations like AICTE, BOAT, NATS, MEMS, State Boards of Technical education etc. are promoting industrial internship/industrial training at different level in technical institutes.

The main aim of In-plant training is to increase the employability skills of the students passing out from institute. For getting real time exposure of industrial environment six- month in-plant training is incorporated in the curriculum of Mechanical Engineering Department. The outcomes of the training will definitely a step ahead in making students employment-ready and will augment various attributes in students.

CO1	Realize administrative, operational and social functioning of industrial organizations.								
CO2	Follow industrial working practices, industrial safety practices, and industrial discipline.								
CO3	Correlate the theory with industrial applications relevant to the courses studied.								
CO4	Select various materials, processes, tools, products etc. with their relevant aspects of manufacturing, quality control, etc.								
CO5	Recognize responsibilities, ethical values, required interpersonal skills, problem solving skills, self-management and job management skills required while working as first line manager.								
CO6	CO6 Effectively communicate through technical reports/projects report writing, present skills.								

Course Outcomes: Student should be able to

Course Content Details:

Unit No	Topics / Sub-topics								
1.0	Mechanical Engineering students study various courses that enable them to work in number								
	of fields related to mechanical engineering namely but not limited to design, thermal								
	engineering, management and industrial engineering, mechatronics, production processes								
	materials engineering, power engineering, fluid mechanics, etc. Student will be placed as								
	trainee in different industries, organizations etc. for inplant training. During inplant training,								
	students may work as supporting member of project team, assist in production work, small								
	tasks, observe the procedures, collect the information etc. at supervisory level pertaining to								
	the following broad areas:								
	1. Production systems and processes								
	Product development, process planning and selection of equipment								
	Design and installation of quality engineering and analytical systems								
	• Investigations regarding mechanization, automation and robotics etc.								
	• Computer-supported production systems etc.								
	2. Industrial Engineering								
	Work study, Method study, Time study activities sampling and determination of time standards and labour (machine costs								
	Development of wage incentive schemes work performance								
	 Measures and task/process evaluation systems determination of human 								
	 resource requirements, occupational safety and health. Productivity 								
	measurement								
	• Design of plant layout, space saving in shop floor area, installation of new								
1	machines, work and material flow, importance of visuals for operations,								
	mock drills for safety, process improvements by kaizen and other								
	techniques, etc.								
	3. Quality assurance								
	• Quality assurance techniques, e.g. application of statistical process control								
	techniques, control charts,								
	• Inspection methods, measurement techniques, identification of sampling								
	plans for quality control and metrology								
	• Implementation of quality management systems, standards like ISO 9000,								
	 Creation of a quality culture and total quality management 								
	 Inspection of incoming and outgoing material of factory including in-process 								
	and post-process inspection								
	4. Production planning and control								
	Stock and purchasing management								
	• Design and implementation of production planning- and control systems								
	Distribution planning, Capacity planning								
	Material requirements planning, production scheduling								
	Development and implementation of maintenance planning systems								
	5. Project management								
	Project planning, -organizing and -control								
	Scheduling and network planning								

Page

• Participating/completing specific project, mini project, special assignment etc. and including it in in-plant training report will be an added advantage for the students.

• During In-plant training, students have to follow the rules and regulations of respective industries. Student should not share any information/sketches/calculations/ formulae etc. of company / department to anyone.
• Students i.e. in-plant trainees must take oral/written prior permission for any type leave from respective industry supervisors. Without permission students should not remain absent.
• Every student will be jointly assessed by polytechnic supervisor, and industry supervisor through mode of Oral examination as well as Term work, after successful completion of training.
• No students will be allowed to change the industry on his/her own.
• Each student has to abide safety rules of allocated industry. They have to follow safety procedures of industry.
Course Outcome:CO1 to CO6 Total Hours: Min. 20 weeks/800 Hrs

Documents/Activities to be completed during Inplant Training :

11000

Sr.	Sr. Unit CO		Title of Activities	Remark
No.	Mapping	Mappin	Carlos and	
		g	3 2-54	
1	-	CO1- CO6	Daily Diary :Students will regularly maintain the daily diarynoting daily activities completed during training, getit certified from concerned supervisors time to time.Inplant Training Manual:Students will carefully read the guidelines of Inplanttraining manual, follow the instruction given.Trainees will regularly maintain inplant trainingmanual updated noting activities completed weeklyduring training, get it certified from concernedsupervisors time to time.Inplant Training Report:At the end of the training, trainee will prepare inplanttraining report, detailing introduction of industry,products, activities performed/observed,assignments /projects participated/ completed, Skillsachieved and conclusions	
	I		Total Hrs	20 weeks
				/800hrs

References/ Books: Inplant Training manual

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	2	3	3	3
CO6	3	3	3	3	2	2	3	3	3

CO Vs PO and CO Vs PSO Mapping

Industry Consultation Committee:

Sr. No	Name	Designation	Institute/Organisation		
1	Mrs. Pooja Acharekar	Manager, HR	L&T, Powai		
2	Mr. Mangesh Nagle,	Managing Director	Pragati Switchgears, Vasai		
3	Mr.G.J. Badwe	Lecturer in Mech. Engg, Training Placement Officer.	SBM Polytechnic, Mumbai		
4	Dr.Ketan Jagtap	Lecturer in Mech. Engg, I/c TPO,	Govt. Polytechnic Vikramgad		
5	U.A. Agnihotri	Lecturer in Mechanical Engineering	Govt. Polytechnic Mumbai		
6	Dr. V. U. Rathod	Lecturer in Mechanical Engineering	Govt. Polytechnic Mumbai		

Coordinator, Curriculum Development,

Department of Mechanical Engineering

Head of Department Department of Mechanical Engineering

I/C, Curriculum Development Cell

Principal

IMPORTANT NOTE

- 1. This curriculum document is an important document for reference to the academic activities of the department.
- 2. Department of Mechanical Engineering/ Government Polytechnic, Mumbai reserves the rights to modify this document as and when required without prior intimation.
- 3. In case of any error or clarification, Please do not guess but contact to the Head of Department.