GOVERNMENT POLYTECHNIC MUMBAI

(Academically Autonomous Institute of Government of Maharashtra)

Department of Mechanical Engineering P19R Curriculum Third Semester

GOVERNMENT POLYTECHNIC MUMBAI

(Academically Autonomous Institute, Government of Maharashtra)

Teaching and Examination Scheme (P19R)

With effect from AY 2022-23

Programme:	Diploma in Mechanical Engineering (Sa	ndwic	ch Patt	ern)						Term /	' Semes	ter -III	
Course			Teaching Hours/Contact Hours				Examination Scheme (Marks)						
Course	Course Title					Credits	Theory						
Coue			Р	TU	Total		TH	TS1	TS2	PR	OR	TW	Total
UV19R103	UNIVERSAL HUMAN VALUES - III	1	80	N#C	CH.	2							
ME19R203	MANUFACTURING PROCESSES	2	4		6	6	60	20	20	25*		25	150
ME19R210	STRENGTH OF MECHANICAL MATERIALS	3	2	14	5	5	60	20	20			25	125
ME19R205	BASIC THERMODYNAMICS	2	2		4	4	60	20	20			25	125
ME19R206	THEORY OF MACHINES	3	2		5	5	60	20	20			25	125
ME19R301	MACHINE DRAWING & COMPUTER AIDED DRAFTING		4	1	4	4				25*		25	50
ME19R207	FLUID MECHANICS AND MACHINERY	2	2	0-1	9 4 0	4	60	20	20			25	125
ME19R103	ENVIRONMENTAL STUDIES	2	2#	- 1	2	2							
	Total	12	18		30	32	300	100	100	50		150	700
	Student Centered Activity (SCA)				05								
	Total Contact Hours				35								

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment) * Indicates assessment by External Examiner else internal practical skill test, #indicates self, on- line learning Mode, @ indicates on line examination Note: Duration of Examination--TS1&TS2 -1 hour, TH- 2 hours 30 min, PR/OR - 3 hours per batch, SCA- Library -1 hour, Sports- 2hours, Creative Activity-2 hours, # Indicates Self, on- line learning Mode through MOOCs/Spoken Tutorials /NPTEL/SWAYAM/FOSSEE etc.

Department Coordinator, Curriculum Development, Dept. of Mechanical Engineering Head of Department Dept. of Mechanical Engineering

In-Charge Curriculum Development Cell Principal

Progra	Programme : Diploma in ME/CE/EE/CO/IF/IS/EC/RT/LT/LG (Sandwich Pattern), AIML									
Course	Course Code: UV19R103 Course Title: Universal Human Values-III									
Compu	Compulsory / Optional: Compulsory									
Teach	ing Sch	ieme an	d Credits			Exam	ination	Scheme		
L	Р	TU	Total (Credit)	TH (2 Hrs 30min)	TH (2 Hrs 30min)TS1 (1 Hr)TS2 (1 Hr)PRORTWTotal					Total
		-	02	-	-	-				

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates online examination Note: For Minimum passing marks under various heads, refer, examination rule AR26.Two practical skill tests are to be conducted. First skill test at mid-term and second skill test at the end of the term.

Rationale:

This course aims to cultivate essential human values and ethics in students to become responsible citizens. It fosters understanding of virtues advocated by great Indian philosophers like truth, non-violence, morality and social responsibility. Students apprehend philosophies of thinkers like Mahatma Gandhi, Swami Vivekananda and Bharat Ratna Dr.Babasaheb Ambedkar; develop courage, patience and dignity through experiences of loyalty and duty; and practice yoga for well-being.

Adopting discussions, debates, visits, reports and applications, the course transforms students into strong, sensitive and virtuous members of society with high moral character and social conscience. In essence, it promotes human values, inculcates ethics and develops the best citizens of India.

CO1	Express gratitude through compassionate service and unconditional giving.
CO2	Spread hope, optimism and cheer through positive words and deeds.
CO3	Understand responsibilities towards the planet, fellow beings and future generations.
CO4	Internalize lessons from great souls who exemplified nobility, courage and righteousness.
CO5	Appreciate life as sacred and valuable; and pursue meaning, purpose and peace.
CO6	Develop holistic well-being through balancing individual needs with common good.

Course Outcomes: On completion of this course, student should be able to

ENT POLYTECHNIC

Course Content Details:

Sr. No	Activity	Related Value/s	Methodology of Implementation	Student's Role	Mentor's role	Resources Required
01	Read and create abstract of biography like, 1. ek hota carver 2.Biography of a yogi 3. JRD Tata 4. Mahatma Gandhi 5. Pant pratinidhi 6. Shriman Yogi	Righteousness	Visit library, find out books, read and prepare the report	Students will need to select a biography to read and create an abstract that summariz es the key ideas and messages in the biography.	Mentors will need to provide guidance and support to help students select an appropriate biography and create a well-writte n abstract.	Access to a library or online resources to select a biography to read and create an abstract.
02	NDRF one day training OR Police Mitra training OR Red cross training OR Fire safety training OR Self defense training for Girls OR CPR training	Accountability Empathy	Plan training with the help of related agencies	Students will need to attend a one-day training session.	Mentors will need to provide guidance on attending the selected training session and ensuring safety.	Access to training facilities and materials may be necessary.

03	Debate on a particular topic among group of students	Clarity of thoughts Politeness	Prepare small groups of students, Choose topics. Avoid controversial topics	Students will need to participate in a debate on a given topic and follow the rules for participati on.	Mentors will need to provide guidance on debate topics and rules for participatio n and provide feedback on students' performanc e.	A list of debate topics and rules for participati on may be required.
04	List different incidents witnessed by you related to loyalty and write a report on it	Loyalty	List related incidents, discuss with mentor and write report.	Students will need to observe and report on incidents related to loyalty and submit a report summarizi ng their findings.	Mentors will need to provide guidelines on what should be included in the report and provide feedback on students' observation s.	A template for the report or guidelines on what should be included may be helpful.
05	Analyse behaviour pattern of self and group member while performing any group activity	Harmony in behavior FING KNO	List different group activities, select anyone from the list and perform it.	Students will need to analyze their own behavior and that of their group members during a group activity and record their observatio ns.	Mentors will need to provide guidance on observing and recording behavior patterns and provide feedback on students' observation s.	Guidelines for observing and recording behavior patterns may be necessary.

00	Vigit tribal area	Energether	List a souless twikes	Ctudanta	Mantana	Matariala
00	visit uitbal area	Empany Social Gratituda	cross and propara	Students will pood	will need to	for
	and spicad	Selflessness	detailed plans	to plan	provide	creating
	sanitary	5011105511055	detailed plans.	and	guidance	educationa
	nractices hygiene			conduct	on planning	l materials
	and education			an	and	or
				awareness	conducting	presentatio
				campaign	an	ns may be
				in a tribal	awareness	needed
				area to	campaign	
				educate	and provide	
				the local	feedback	
				communit	on students'	
				y on a	materials	
				selected	and	
				topic.	presentatio	
				1	ns.	
07	Visit websites of	Social Gratitude	Visit CSR	Students	Mentors	Access to
	reputed industries	Accountability	section of the	will need	will need to	the
	and study their	NT F	website of	to	provide	internet or
	Corporate Social	E	selected industry	research	guidance	relevant
	Responsibility		TA TO	and report	on	industry
	(CSR) activities.	8/20	Jan Stranger	on the	researching	publicatio
	Also arrange an	S K Star		CSR	and	ns may be
	interview of a	I O LA		activities	reporting	required.
	successful	<u>ا ا ا ا ا ا ا ا ا</u>		ofa	on CSR	
	entrepreneur.			selected	activities	
			2111	industry.	and provide	
			2	1 - 1	feedback	
		3.45	D. 1960	×.	on students'	
00	1 Carrow Islaw dawa		Colored S		reports.	
08	1. Seven blunders	Unaracter	Select anyone	Students	will need to	
	Gondhi ond	Sacrifico	Bronaro Group	to propara	will lieed to	
	practice them as an	Honesty	presentations on	and	guidance	
	ethic in your daily	Accountability	selected topic	nresent a	on	
	life to be a moral	Patriotism	selected topic.	groun	nrenarino	
	citizen	1 401000000		presentati	and	
	2. Swami			on on a	presenting	
	Vivekananda and			selected	a group	
	his philosophy			topic.	presentatio	
	3.Bharatratna Dr			T	n and	
	Babasaheb				provide	
	Ambedkar and his				feedback	
	philosophy,				on students'	
	teachings				presentatio	
	Any other social				ns.	
	reformer					

09	Understanding Eight limbs	Health	Arrange the session of a	Students will need	Mentors will need to	Resources such as
	(Ashtanga) of	Social gratitude	meditation expert	to	provide	voga mats
	Yoga for gaining	Social grantade	to understand the	understan	guidance	or printed
	the best mental		nhilosonhy of	d and	on	materials
	health			practice	understandi	on the
	ilcaitii.		10ga.	the	ng and	eight
				nrinciples	ng and	limbs of
				of the	the	
				oight	nringinlas	yoga may
				limba of	of the eight	required
					limba of	required.
				yoga. Draatiaa it	ninos or	
				daily for	yoga anu provido	
				the best	faadbaal	
				nhysical	on students'	
				physical	prograss	
				allu montol	progress.	
				hoalth		
10	Fight fold	Truthfulnoss	Toundarstand	After	Drovido	https://on
10	Eight-1010	Non violence	the philosophy	Allel	related	nups.//en.
	asinaligik path for	Contentment	and its use to	ding share	related	wikipedia.
	cessation of	Dergistence	and its use to	the	resources	olg/wiki/A
	suiterings	reisistence	stop suffering	avnoriona		sintanga_(e
	OP			experience os with		ignt_nnos
	OK	1917 🛯		es with		_oi_yoga)
	Vinassana			Apply it		
	vipassalla		R & W/W	in your		
			4 6 2	daily life		
11	Writing daily diary	Honesty	Student to write	Students	Mentors	Fach
11	withing during during during	Punctuality	diary every day	will need	will need to	student
		Tunotuality	diary every day	to write a	check and	will need a
		GKN	10	daily diary	provide	notebook
		~///	WLEDGE	entry	feedback	or journal
				reflecting	on daily	of journal.
				on their	diary	
				thoughts	entries to	
				feelings	encourage	
				and	reflection	
				experienc	and	
				es	self-awaren	
				v 5.		

Methodology:

- 1. The course is Non Examination, Credit Course.
- 2. The course will be introduced during the student induction programme (orientation programme) of one week duration. Most of the activities are to be completed during induction programme and to be continued throughout the term during SCA hours under the guidance of mentor.
- 3. The mentor will be assigned to the student for a group of 20 students each.

- 4. In consultation and under supervision of a mentor, the student/ Group of students has to complete the activity.
- 5. Activities no. 6,7, 9 and 10 can be performed in collaboration with related government organizations or industries (under CSR activity).
- 6. All events will be organized and managed by students. The mentor will work as a facilitator/ advisor.
- 7. The strategies to learn the course is "Self- Exploratory" and "Experiential Learning"
- 8. The onus of responsibility for completing the activities is with students.
- 9. The student has to complete at least five no. of activities throughout the term to earn the credits.
- 10. Activity no.6 is compulsory.
- 11. Students will write reports on each activity performed and submit it to mentors to earn credits.

Refer	ences/ Books:	DIVIER	
Sr. No.	Title	Author, Publisher, Edition and Year Of publication	ISBN
1	A Foundation Course in Human Values and Professional Ethics	R.R. Gaur, R. Sangal, G.P. Bagaria, Excel Books, New Delhi, 2010	978-8-174-467 81-2
2	Human Values	A.N. Tripathy, New Age International Publishers, 2003	978-8-122-425 89-5
3	Teacher's Manual - A Foundation Course in Human Values and Professional Ethics	R.R. Gaur, R. Sangal, G.P. Bagaria, Excel Books, New Delhi, 2010	-
4	Science and Humanism, Towards a Unified World View	PL Dhar, RR Gaur, Commonwealth Publications, 1992	978-8-171-692 22-4
5	Education for values in schools- a framework	NCERT	
6	Value oriented education	E N Gawande	
7	Autobiography of a Yogi	Paramahansa Yogananda, Yogoda Satsanga Society of India; Complete edition (9 February 1998)	978-818953551 3
8	Teachings of Swami Vivekananda	Swami Vivekanada, Vedanta Pr; Fifth edition (1 June 1971)	978-818530187 7

E-References:

- 1) <u>https://youtu.be/k0Ju1vj_BVk</u> (The 10 Most Important Human Values)
- 2) <u>https://youtu.be/QeogOlzG2ls</u> (Value of Education -short film)

E-References for mentors:

1) https://www.edutopia.org/

2) https://en.wikipedia.org/wiki/Seven_Social_Sins

Consultation Committee:

Sr. No	Name	Designation	Institute/Organisation
1	Dr. L.A. Patil	Principal (Retired)	Pratap College, Amalner
2	Dr. Nitin Deshpande	Lead Consultant	Dnyanpeeth Academy, Pune
3	Dr. Chandrakant Shahasane	Founder Trustee	Karnala Charitable Trust, Pune
4	Mr. U.A. Agnihotri	Lecturer, Mechanical Engineering	Government Polytechnic, Mumbai
5	Mr. K. V. Patil	Lecturer, Mechanical Engineering	Government Polytechnic, Mumbai

Program	Programme : Diploma in Mechanical Engineering (Sandwich Pattern)									
Course	Course Code: ME19R203 Course Title: Manufacturing Processes									
Compul	Compulsory / Optional: Compulsory									
Teachin	ng Sche	eme and	l Credits			Exa	mination	Scheme		
L	Р	TU	Total	TH (2 Hrs 30min)TS1 (1 Hr)TS2 (1 Hr)PRORTWTotal					Total	
2	4		6	60	20	20	25*		25	150

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination Note: For Minimum passing marks under various heads, refer, examination rule AR26. Two practical skill tests are to be conducted. First skill test at mid-term and second skill test at the end of the term.

Rationale:

Manufacturing is the basic area for any mechanical engineering technician. The technician should be exposed to basic manufacturing processes. This course will help the student to get familiarized with working principle and operation like turning, drilling, milling, casting, and joining processes etc. Basic knowledge of these processes will help the technician to select most appropriate process for getting the desired results in terms of getting raw material converted in to finish product, as per the requirement. DUN

0
C

CO1	Describe basic foundry procedures
CO2	Describe sheet metal presses and press operations
CO3	Describe basic joining processes and their applications
CO4	Describe construction and various operations carried out using lathe and boring machine
CO5	Describe constructional features, types of milling machines and drilling machines and operations using them
CO6	Describe grinding machines, operations performed using them and surface treatment processes

Course Content Details:

Unit No	Topics / Sub-topics							
	Foundry Practice:							
	nces, color coding, moulding							
	tools and equipment,							
	 1.2. Moulding sands, types of sands, sand properties, 1.3. Elements of sand moulds, Machine molding, 							
1								
	1.4. Permanent mould casting-Gravity & Pressure Die casting,							
	1.6. Safety precautions in foundry							
	Course Outcome: CO1Teaching Hours :04Marks: 08 (R- 0, U-4, A-4)							

Page.

	Press Working:							
	2.1 Types of presses, press specification, parts of press, press classification,							
2	2.2 Press tools: dies and punches, Press operations, Elements of press tool,							
	2.3 Safety while working in press shop							
	Course Outcome: CO2, Teaching Hours :04 Marks: 06 (R- 0, U-2, A-4)							
	Joining Processes:							
	3.1 Principle of welding processes, Classification of welding processes,							
	3.2 Arc welding- Welding machines, Contents of electrodes for arc welding, manual arc							
	welding, TIG/MIG welding, Submerged arc welding, hydrogen arc welding,							
	3.3 Gas welding set up for oxy acetylene welding, types of flames, their applications,							
3	3.4 Resistance welding- Spot, seam, projection, butt resistance welding,							
	3.5 Defects in welding and their causes.							
	3.6 Brazing and soldering-process & applications,							
	3.7 Safety precautions in joining processes.							
	Course Outcome: CO3 Teaching Hours :04 Marks: 08 (R- 2,U-2, A-4							
	A 1 Centre lathe specification different parts. Lathe classification							
	4.1 Centre lattie specification, uniferent parts. Lattie classification,							
	4.2 Lathe operations: turning, boring, parting off, knurling, facing, drilling, taper turning, thread cutting							
4	4.3 Single point cutting tool geometry							
	A A Safety precautions while working on lathe							
	4.4 Safety precautions while working on fame							
	Course Outcome: CO4Teaching Hours :04Marks: 08 (R- 2, U-4, A-2)							
	Milling machine: ESTD. 1960							
	5.1 Milling machines classification, different parts of Column and Knee type milling							
	machine,							
5	5.2 Milling machine operations. VOWLEDG							
	5.3 Down milling, up milling, plain milling cutter,							
	5.4 Gear cutting with simple indexing							
	5.5 Safety precautions while working on milling machines							
	Course Outcomes CO5 Teaching Houng 204 Markey 08 (D. 2, U. 4, A. 2)							
	Drilling machines:							
	6.1 Classification of drilling machines,							
	6.2 Different parts of Radial drilling machine and Column type drilling machine							
	6.3 Drilling machine operations.							
6	6 4 Twist drill nomenclature							
	6.5 Safety precautions while working on drilling machines							
	o.s barety precautions while working on drining machines							
	Course Outcome: CO5Teaching Hours :04Marks: 08 (R-2, U-4, A-2)							

	Boring Machines:							
	7.1 Classification of boring machines, Different parts of horizontal boring machine, specification of boring machine.							
7	7.2 Operations of boring machine,							
/	7.3 Boring head, facing head, boring tools,							
	7.4 Safety precautions while working on boring machine							
	Course Outcome: CO4 Teaching Hours :04 Marks: 06 (R-2, U-2, A-2)							
	Grinding Machines and Surface Treatments							
	8.1 Classification of grinding machines,							
	8.2 Grinding machine operations,							
	8.3 Grinding wheel: abrasives, grit, bond, grades, structure, and grinding wheel specification.							
8	8.4 Safety precautions while working on grinding machine.							
	8.5 Surface Treatment, Need of surface treatment, Surface anodizing, Cadmium coating,							
	Galvanizing,							
	8.6 Safety precautions in surface treatments							
	Star and Co							
	Course Outcome: CO6 Teaching Hours :04 Marks: 08 (R-2, U-2, A-4)							

Suggested Specifications Table (Theory)

Unit	O NOT O TO THE	Distribution of Theory Marks					
No	Topic Title	R Level	U Level	A Level	Total Marks		
1	Foundry Practice	<u>_</u>	4	4	8		
2	Press Work		2	4	6		
3	Joining Processes	2	2	4	8		
4	Lathe Machine	2	4	2	8		
5	Milling Machine	2	4	2	8		
6	Drilling Machine	2	4	2	8		
7	Boring Machine	2	2	2	6		
8	Grinding Machine	2	2	4	8		
	Total	12	24	24	60		

List of Practicals:

Sr. No.	Unit No	List of Experiments	CO	Hours
1	1	Making one wooden pattern	CO1	8
2	1	Making one simple job on moulding	CO1	6
3	2	One simple job on press	CO2	4
4	3	Making a simple job on welding joint	CO3	6
5	4	One plain turning job on center lathe	CO4	6
6	4	One job on thread cutting, chamfering, filling on centre lathe	CO4	8
7	4	One job on step turning, taper turning on lathe	CO4	8
8	5	One job of gear cutting on milling machine and lathe	CO5	8
9	8	Tool grinding practice	CO6	6
		Total		60

Instructions:

• A specimen job is to be prepared and demonstrated by concerned workshop instructor

before giving job to the students.

- Students will maintain a diary containing the details of the job as above.
- Theory contents are to be taught by faculty /workshop superintendent.
- Term end practical examinations on one of above machines for three hours duration

References/ Books:

Sr. No.	Title	Author, Publisher, Edition and Year Of publication	ISBN
1	Introduction to Manufacturing Processes	Jhon Schey, Mcgraw Hills, 2012	978-0071-1691- 10
2	A course in of Workshop Technology Volume. I	B S Raghuwanshi, Dhanpatrai & Sons, 2017	978-1020092015
3	Elements of Workshop Technology Vol. II (Machine Tools)	Hajra Chawdhury, Media Promotors and Publications Pvt. Ltd. 15 th Ed, 2008	978-8185099156
4	Elements of Workshop Technology Vol. I (Manufacturing Processes)	Hajra Chawdhury, Media Promotors and Publications Pvt. Ltd. 15 th Ed, 2008	978-8185099149

E-References:

- www.engineeringpractice.org>lathe
- <u>www.hnsa.org>wp-contents</u>
- <u>www.learmmechanical.com>drillingmachine</u>
- www.americanamchinist.com>article>cuttingtools
- www.theengineerspost.com>broachingmachine www.reliance-foundry.com
- www.eskaymachine.com

CO Vs PO and CO Vs PSO Mapping

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	2	2	2	2	1	2	2	3	3
CO2	2	2	2	1	1	2	2	2	3
CO3	3	2	2	20	Wite	3	2	2	2
CO4	3	2	2	3	2	3	2	3	3
CO5	2	2	2	3	2	2	2	2	2
CO6	1	2 0	2	2	5	1	2	1	2

Industry Consultation Committee:

Sr. No	Name	Designation	Institute/Organisation
1	Mr. Hiremath P.	Sr. Engineer	Reliance Industries, Navi Mumbai
2	Mr. Rao V B	Asst. Professor	Fr. C.R.C. Engg, Mumbai
3	Mr. Puralkar Mohanish	Manager, R&D	Miles Ahead Tech Pvt Ltd
4	Mr. Ambadekar N M	Work shop Superintendent	Govt. Polytechnic, Thane
	Mr. Joshi S. V.	Lecturer in Mech. Engg.	Govt. Polytechnic, Mumbai
	Mr. Ansari N N	Lecturer in Mech. Engg.	Govt. Polytechnic, Mumbai

Coordinator,
Curriculum Development,
Department of Mechanical Engineering

Head of Department Department of Mechanical Engineering

I/C, Curriculum Development Cell

 $Page \mathbf{5}$

Principal

Program	Programme : Diploma in Mechanical Engineering (Sandwich Pattern)									
Course	Course Code: ME19R210 Course Title: Strength of Mechanical Materials									
Compu	Compulsory / Optional: Compulsory subject									
Teach	Teaching Scheme and Credits Examination Scheme									
L	Р	TU	Total	TH (2 Hrs. 30 min)	TS1 (1 Hr.)	TS2 (1 Hr.)	PR	OR	TW	Total
3	2	-	5	60	20	20	-	-	25	125

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination Note: For Minimum passing marks under various heads, refer, examination rule AR 26. Two practical skill test are to be conducted. First skill test at mid-term and second skill test at the end of the term.

Rationale: Diploma holders in this course are required to analyse reasons for failure of different components and select the required materials for different applications. For this purpose, it is essential to teach them concepts, principles, applications and practices covering stress, strain, bending moment, shearing force, shafts, columns and springs. Hence this subject has been introduced. It is expected that efforts will be made to provide appropriate learning experiences in the use of basic principles to the solution of applied problems to develop the required competencies.

Course Outcomes: Student should be able to

CO1	Analyze/compare various mechanical properties and develop theoretical basics for axial loading, bending and buckling.
CO2	Calculate principal stresses using analytical and graphical Mohr's circle diagram
CO3	Solve moment of inertia for different sections, section modulus and bending stress.
CO4	Draw shear force diagram & bending moment diagram and calculating slope/deflection for the structural components subjected to lateral loading.
CO5	Analyze direct/bending stresses, Eccentric and Buckling load.
CO6	Evaluate strain energy stored in the element subjected to gradual/sudden/impact loads and numerical on torsional shear stress

Course Content Details:

Unit No	Topics / Sub-topics						
1	Mechanical Properties of Materials, Simple stresses & Strains						
	1.1 Types of loads, Simple stresses & strains viz. tensile, compressive, Shear, Crushing, Thermal stresses Hoon stresses & corresponding strains Volumetric Strain Bulk						
	modulus, Hook's law, Young's modulus, Modulus of Rigidity, stress-strain curves for						
	ductile & brittle materials, Poisson's ratio.						
	1.2 Concepts of Buckling – Rankine's & Euler's formulae for buckling load for columns / shafts						
	under compression, concepts of equivalent length for various end conditions.						
	(Problems on compressive & tensile stresses, Thermal stresses, butt & lap riveted joints,						
	simple cases of buckling).						
	1.3 Concepts of Deflection & slope of beams – relation between bending moment & slope.						
	derivation)						
2	Course Outcome: CO1, Teaching Hours: 8 Marks: 10(R-2, U-4, A-4) Principal planes & Principal stresses						
-	21 Concert of principal planes & stresses Definition of principal planes, principal stresses, obligue						
	plane and obliquity.						
	2.2 Different states of stresses, normal & tangential stress on oblique plane, resultant stress.						
	2.3 Analytical and graphical method (Mohr's Circle) for locating principal plane and calculating						
	principal stresses for uniaxial/biaxial loading.						
	Course Outcome: CO2 Teaching Hours : 6 Marks: 10 (R-2, U-4, A-4)						
3	Moment of Inertia & Bending stresses						
	3.1 Moment of Inertia						
	3.1.1 Moment of Inertia (M I): M.I. for plane areas, radius of gyration, M.I for regular plane						
	areas						
	3.1.2 Rectangle, triangle, circle, semi-circle, hollow rectangular and hollow circular section.						
	3.1.3 Parallel axes theorem & Perpendicular axes theorem (no derivation)						
	3.1.4 M.I of symmetrical and unsymmetrical I sections, channel and angle sections and T						
	section. M.I of built up sections symmetrical and unsymmetrical about centroidal						
	axis.						
	3.2 Bending stresses						
	3.2.1 Theory of simple bending, equation of bending.						
	3.2.2 Assumptions in the theory of bending, moment of resistance, section						
	modulus & neutral axis. Simple numerical.						
	Course Outcome: CO3Teaching Hours: 8Marks: 10(R-2, U-4, A-4)						
4	Shear Force & Bending Moment						
	4.1 Types of beams, types of supports, concept and definition of Shear force (S.F) and bending moment (B M)						
	4.2. S F and B M diagrams for simply supported overhang beams subjected to point load & UDL						
	Location of point of contraflexure and maximum bending moment calculations (if any).						

	() 11							
	(No problem to	be set for External moment or couple),						
	4.3 S.F and B.M diag	grams for cantilever subjected to point	load & UDL. Location of point of					
	contraflexure and	d maximum bending moment calculation	ons (if any).					
	(No problem to)	be for External moment or couple)						
	Course Outcome: CO	D4 Teaching Hours: 10	Marks: 12 (R-2, U-6, A-4)					
5	Direct and bending str	esses						
	5.1 Concept of direct a	and bending stresses, section modulus.						
	5.2 Eccentric loads, co	ore or kernel of section, middle third rule	, middle fourth rule.					
	5.3 Members of unif	form sections subjected to eccentric 1	oads with eccentricity and stress					
	distribution at the	base.	, , , , , , , , , , , , , , , , , , ,					
	5.4 Structure subjected	d to horizontal vertical loads e g tie har	s columns etc					
	5.4 Structure subjected	a to nonzontar, verticar loads e.g. tie bar	s, columns etc.					
	Course Outcome: CO	D5 Teaching Hours: 6	Marks: 8 (R-0, U-4, A-4)					
6	Strain Energy & Tor	rsion						
	6.1 Strain Energy	<i>y</i>						
	6.1.1 Definition and	Concept of Strain energy,						
	6.1.2 Types of loading	ng gradual, sudden & Impact loading						
	6.1.3 Stresses develo	oped due to gradual, sudden & impact	t load.					
	6.1.4 Strain energy s	stored due to gradual, sudden & impa	ct loading.					
	6.1.5 Resilience, pro	oof resilience and modulus resilience.						
	6.2 Torsion							
	6.2.1 Stresses, strain	& deformations in determinate shaft	s of solid & hollow,					
	Homogeneous &	composite circular cross section subje	ected to twisting moment.					
	6.2.2 Derivation of t	torsion equation. Simple Numericals						
	1		5					
	Course Outcome: CO	D6 Teaching Hours: 7	Marks: 10 (R-2, U-4, A-4)					

Suggested Specifications Table (Theory):

Unit No	TING		Distribution of Theory Marks				
	Topic Title VOWLEDGE	R Level	U Level	A Level	Total Marks		
1	Mechanical Properties of Materials, Simple stresses & Strains	2	4	4	10		
2	Principal planes & Principal stresses	2	4	4	10		
3	Moment of Inertia & Bending stresses	2	4	4	10		
4	Shear Force & Bending Moment	2	6	4	12		
5	Direct and bending stresses	-	4	4	08		
6	Energy & Torsion	2	4	4	10		
	Total	10	26	24	60		

196

List of experiments:

Sr.	Unit	COs	Title of the Experiments	Hours
No.	No			
1	1	CO1	Tensile test on Mild steel/ Aluminium specimen, plotting of stress	04
			strain curve and indicating significant point as per I.S. requirement	
2	1	CO1	Izod impact test on M.S., Copper, Aluminum and Brass	02
3	2	CO2	To find principal stresses and to locate principal plane using Mohr circle method and validate the same with numerical method. (Two different cases)	02
4	2	CO3	Bending test on mild steel/timber.	04
	and	and		
	4	CO4		
5	3	CO3	Assignment on Moment of Inertia & Bending stresses.	02
6	4	CO4	To draw shear force and bending moment diagram for different kinds of loads	02
7	5	CO5	Assignment on Direct and bending stresses.	02
8	6	CO6	Assignment on Strain Energy & Torsion.	02
9	1	CO1	Shear test – Single and double shear for mild steel bar	02
10	1	CO4	Deflection test on timber / metal specimen	02
11	6	CO6	Torsion test on metal bar	02
12	1	CO1	Hardness test (Brinell Hardness) on various metals.	02
13	1	CO1	Compression testing on metal/timber.	02
			Total	30

Note: All experiments/assignments are compulsory

References/ Books:

Sr. No	Title	Author, Publisher, Edition and Year Of publication	ISBN
1	Strength of Materials	S. Timoshenko, D. Van Nostrand Company Inc. 3 rd Ed, 1956	978-1124-1550-98
2	Strength of Materials	R.K. Bansal, Laxmi Publication Pvt Ltd. Revised Ed, 2010	978-8131-8081-46
3	Strength of Materials	R. K. Rajput, S. Chand & Company Ltd., 5 th Ed, 2015	978-9385-4013-67
4	Strength of Materials	S. Ramamrutham, Dhanpat Rai and sons Publishing House, 16 th Ed, 2011	978-9384-3782-64
5	Text Book of Strength of Materials	R.S. Khurmi, S. Chand & Company Ltd. 2015	978-9385-4019-54
6	Study of Materials	Ferdinand L. Singer, Harper & Row Publisher, New York, 4 th Ed	978-0063-5059-95

$P_{age}4$

E-References:

- 1) https://nptel.ac.in/courses/Webcourse-contents/IIT-
- ROORKEE/strength%20of%20materials/homepage.htm
- 2) <u>https://onlinecourses.nptel.ac.in/noc17_ce22/preview</u>
- 3) https://nptel.ac.in/Aeronautical/Strength%20of%20Materials/course_strength%20of%20materials.pdf

4) <u>https://www.slideshare.net/khagendragautam/strength-of-material-3-som-mechanical-engineering-handwritten-classes-notes-study-materials-for-ies-ps-us-gate</u>

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	2	2	2	1	2	1	3	2	1
CO2	2	3	2	1	2	2	3	2	1
CO3	3	2	3	2	2	2	3	3	1
CO4	3	3	3	2	2	2	3	3	1
CO5	3	3	3	2	2	2	3	3	1
CO6	1	3	3	2	2	2	3	3	1

CO Vs PO and CO Vs PSO Mapping

Industry Consultation Committee:

Sr. No	Name	Designation	Institute/Organisation
1	Dr. Shashikant N. Joshi	Assistant Superintending Engineer, Mechanical Circle	Water Resource Department, Central Building, Pune-01
2	Dr. Prashant G. Khakse	Training Officer, Training Division	Senior Engineer, Maintenance Training Organization Air- India Engineering services Ltd., old airport, Santacruz (E), Mumbai
3	Dr. P. G. Gaikwad,	Associate Professor, Civil Engineering Department.	Sardar Patel College of Engineering, Andheri(W), Mumbai
4	Dr. Shivaji M. Dumne	Sr. Lecturer in Civil Engineering Department	Government Polytechnic Awasari(kh)Ta: Ambegaon, Dist Pune 412405
5	Prof. Dipak Choudhari	Asst. Professor, Mechanical Engineering Department	Vidhyavardhani College of Engineering, Vasai, Dist. Palghar.
6	Mr. Gaurav Dharme	Work Shop Superintendent	Fr. Agnel Technical Institute, Bandra (W), Mumbai
7	Prof. Dinesh H. Kamble	HOD, Mechanical Engineering Department.	Govt. Polytechnic Mumbai, Bandra (E), Mumbai, Maharashtra 400051
8	Dr. Avinash A. Lonkar	Sr. Lecturer in Mechanical Engineering	Govt. Polytechnic Mumbai, Bandra (E), Mumbai, Maharashtra 400051
9	Dr. Sunil B. Mahagaonkar	Sr. Lecturer in Mechanical Engineering	Govt. Polytechnic Mumbai, Bandra (E), Mumbai, Maharashtra 400051

Coordinator,

Page **J**

Curriculum Development,

Head of Department Department of Mechanical Engineering

Department of Mechanical Engineering

I/C, Curriculum Development Cell

Principal

Programme : Diploma in Mechanical Engineering (Sandwich Pattern)										
Course Code:ME19R205				Course Title	e: Basic '	Thermod	lynamics	5		
Compulsory / Optional: Compulsory										
Teachi	ng Sche	eme and	l Credits			Examin	ation Scl	heme		
TH	PR	TU	Total	TH (2.5 Hrs)	TS1 (1 Hr)	TS2 (1Hr)	PR	OR	TW	Total
2	2		04	60	20	20			25	125

Abbreviations: TH- Theory; PR-Practical; TU-Tutorial; TS1 and TS2- Term Tests; OR-Oral Exam; TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal assessment Note: For Minimum passing marks under various heads, refer, examination rule AR26.

Rationale: Basic thermodynamics is one of the core engineering subjects for mechanical engineering students. A diploma holder is supposed to maintain steam generators, turbines, compressors, IC engines, refrigerators and other power plant equipment. Therefore, it is essential to impart him basic concepts of thermodynamics, steam generators, steam turbines, and heat exchangers. This course will enable students to establish foundation required to design, operate and maintain these devices.

Course Outcomes: Student should be able to

CO1	Describe the basic concepts of thermodynamics.
CO2	Apply gas laws for given processes.
CO3	Describe various thermodynamic reversible processes.
CO4	Apply first and second law for the thermodynamic systems.
CO5	Describe the working, construction and applications of steam boilers.
CO6	Describe different modes of heat transfer.

Course Content Details:

Unit No	Topics / Sub-topics			
INU				
1	 Fundamental Concepts 1.1 Thermodynamic state and system, boundary, surrounding, universe. Thermodynamic systems-closed, open, isolated, adiabatic, homogeneous and heterogeneous, macroscopic and microscopic. Industrial examples of different thermodynamic systems. 1.2 Properties of system – intensive and extensive, thermodynamic equilibrium, quasi – static process, reversible and irreversible processes. 1.3 Zeroth law of thermodynamics, definition of properties like pressure, volume, temperature, enthalpy, internal energy. Course Outcome: CO1 Teaching Hours: 06 Marks: 10 (P-4, U-2, A-4) 			
	Ideal Gases			
2	 2.1 Definition of an ideal gas, explanation of ideal gas laws – Boyle's law, Charle's law, Gay-Lussac's Law, Avogadro's law. 2.2 Universal gas constant, Characteristic gas constants, Specific heat at constant pressure, specific heat at constant volume of gas, simple problems on gas equation. Course Outcome:CO2 Teaching Hours : 03 Marks:08 (R-2, U-2, A-4) 			

	Thermodynamic Processes on Gases				
	3.1Types of thermodynamic processes – isochoric, isobaric, isothermal, hyperbolic,				
3	isentropic, polytropic and throttling processes,				
	3.2 Equations representing the processes Derivation of work done, change in internal				
	energy, rate of heat transfer for the above processes.				
	Course Outcome: CO3 Teaching Hours : 03 Marks:08 (R-2, U-2, A-4)				
	Laws of Thermodynamics				
	4.1 Laws of conservation of energy, first law of thermodynamics (Joule's experiment),				
	Limitations of first law of thermodynamics, Application of first law of thermodynamics				
	to non-flow systems -Constant volume, constant pressure, Adiabatic and polytropic				
	processes.				
4	4.2 Steady flow energy equation, Application of steady flow energy to equation,				
	turbines, pump, boilers, nozzles.				
	4.3 Heat source and heat sinks, statement of second laws of thermodynamics: Kelvin				
	Planck's statement, Clasius statement, Perpetual motion Machine of first kind, second				
	kind, Carnot engine, Introduction of third law of thermodynamics, concept of				
	irreversibility, entropy.				
	Course Outcome: CO4 Teaching Hours :07 Marks:12 (R-4 , U-2 , A-6)				
	Properties of Steam & Steam Generators				
	5.1Formation of steam and related terms, thermodynamics properties of steam, steam				
	tables, internal latent heat, internal energy of steam, Mollier diagram (H - S Chart),				
	Expansion of steam, Hyperbolic, reversible adiabatic and throttling processes				
5	Quality of steam (dryness fraction).(Numerical)				
	5.2 Steam Generators :				
	Uses of steam, classification of boilers, comparison of fire tube and water tube boilers.				
	Construction features of Cochran, La-mont and Loeffler, Lancashire boiler, Babcock &				
	Wilcox Boiler. Boiler mountings and accessories, Introduction to modern boilers.				
	Course Outcome: CO5 Teaching Hours : 06 Marks: 12 (R-2, U-4, A-6)				
	Introduction to Heat Transfer				
	6.1 Modes of heat transfer conduction, convection and radiation.				
	6.2Conduction- Fourier's law, thermal conductivity conduction through cylinder, thermal				
	<i>E</i> 2 Convection Newton's low of cooling Network and forced convection				
6	6.5 Convection- Newton's law of cooling, Natural and forced convection.				
	8.4 Kadiation- thermai fadiation, absorptivity, emissivity, black and grey bodies, Stefan –				
	6.5 Heat exchangers classification construction and working of shell and tube shall and				
	coil nine in nine type and plate type heat exchanger				
	Course Outcome: CO6 Teaching Hours • 05 Marks • 10 (R-2 U-4 A-4)				
6	 Planck's statement, Clasus statement, Perpetual motion Machine of first kind, second kind, Carnot engine, Introduction of third law of thermodynamics, concept of irreversibility, entropy. Course Outcome: CO4 Teaching Hours :07 Marks:12 (R-4 , U-2 , A-6) Properties of Steam& Steam Generators 5.1Formation of steam and related terms, thermodynamics properties of steam, steam tables, internal latent heat, internal energy of steam, Mollier diagram (H – S Chart), Expansion of steam, Hyperbolic, reversible adiabatic and throttling processes Quality of steam (dryness fraction).(Numerical) 5.2 Steam Generators : Uses of steam, classification of boilers, comparison of fire tube and water tube boilers. Construction features of Cochran, La-mont and Loeffler, Lancashire boiler, Babcock & Wilcox Boiler. Boiler mountings and accessories, Introduction to modern boilers. Course Outcome: CO5 Teaching Hours : 06 Marks:12 (R-2 , U-4 , A-6) Introduction to Heat Transfer 6.1Modes of heat transfer conducting and insulating materials. 6.3 Convection- Newton's law of cooling, Natural and forced convection. 6.4 Radiation- thermal radiation, absorptivity, emissivity, black and grey bodies, Stefan – Boltzmann law. 6.5 Heat exchangers – classification, construction and working of shell and tube, shell and coil, pipe in pipe type and plate type heat exchanger. Course Outcome: CO6 Teaching Hours: 05 Marks: 10 (R-2 , U-4 , A-4) 				

Suggested Specifications Table (Theory):

Unit		Distribution of Theory Marks					
No	Topic Title	R Level	U Level	A Level	Total Marks		
1	Fundamental Concepts	4	2	4	10		
2	Ideal Gases	2	2	4	8		
3	Thermodynamic Processes on Gases	2	2	4	8		
4	Laws of Thermodynamics	4	2	06	12		
5	Properties of Steam & Steam Generators	2	4	06	12		
6	Introduction to Heat Transfer	2	4	4	10		
	Total	16	16	28	60		

List of experiments:

ANT POLYTECH

Sr. No.	Unit No	COs	Title of the Experiments / Assignment	Hours		
1	1	CO1	Assignment on fundamental concepts of thermodynamics.	02		
2	2	CO2	Assignment on ideal gases.	02		
3	3	CO3	Assignment on thermodynamic processes on Gases.	02		
4	4	CO4	Assignment on Laws of Thermodynamics.	02		
5	5	CO5	Demonstration of working of different types of boilers. Such as Nestler boiler, Cochran, La-mont and Loeffler, Lancashire boiler, Babcock & Wilcox Boiler.	04		
6	5	CO5	Study of boiler of mountings.	02		
7	5	CO5	Study of boiler accessories.	02		
8	5	CO5	Determination of dryness fraction of a given sample of steam by using separating calorimeter.	02		
9	5	CO5	Visit to Sugar factory or boiler in industry.	02		
10	6	CO6	Demonstration of heat transfer through conduction, convection and Radiation	02		
11	6	CO6	Calculate thermal conductivity of metallic rod.	04		
12	6	CO6	Identify different equipment in power engineering lab having heat exchangers and classify heat exchangers. Write construction and working of any 03 of above heat exchangers.	04		
Total						

Page 3

References/ Books:

Sr. No.	TitleAuthor, Publisher, Edition and Year Of publication		ISBN
1	Engineering Thermodynamics	PK Nag; Tata McGraw Hill,Delhi.	0-07-026062-1
2	Basic Engineering Thermodynamics	Roy Chaudhary; Tata McGraw Hill,Delhi.	9780070965881
3	Engineering Thermodynamics	CP Arora; Tata McGraw Hill,Delhi.	0-07-462014-2
4	Thermal Engineering	R.S. Khurmi,& J.K.Gupta S. Chand Technical Publication	9788121925730
5	Thermal Engineering	P.L.Ballaney ,Khanna Publication	978-8174090317
6	A Course in Thermal Engineering	Domkundwar .S, Kothandaraman C. P. Domkundwar, Dhanpat Rai & sons.	9788177000214
7	Thermal Engineering	M.M.Rathore, Tata McGraw Hill.	9780070681132
8	Thermal Engineering	Rajput R.K, Firewall Media, New Delhi 2005	9788170088349

E-References:

- 1. https://swayam.gov.in/
- 2. <u>www.youtube.com</u>
- 3. https://learnengineering.org/
- 4. <u>https://nptel.ac.in/</u>

CO Vs PO and CO Vs PSO Mapping:

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	3	3	2	2	1	2	2	2	1
CO2	2	2	1	1	2	2	1	2	2
CO3	3	2	2	2	2	2	2	2	3
CO4	3	3	3	2	2	1	2	2	3
CO5	3	3	3	2	2	2	2	2	3
CO6	3	2	2	2	2	1	2	2	3

Sr.	Name	Designation	Institute/Organisation
No			
1	Mr. E.C.Dhembare	LME	G.P.Mumbai
2	Mr. Y.B.Jamnik	LME	G.P.Mumbai
3	Mr. A.G. Joshi	LME	G.P.Ahmadnagar
4	Mr. Mahesh Mahadik	Sr. Project Engineer	Atlas Copco India Ltd
5	Mr. Amol S. Dhawade	LME	Indira Gandhi Polytechnic
			Belwandi(Sugar).Ahmadnagar
6	Mr. Vaibhav Patil	MEO Class IV, Marine	Sea World Management Ltd. Monaco
		Engineering Officer	Italy.

Industry Consultation Committee:

Coordinator,

Curriculum Development,

Department of Mechanical Engineering

I/C, Curriculum Development Cell

Principal

1960

ESTO

OW

Head of Department

Department of Mechanical Engineering

Programme : Diploma in Mechanical Engineering (Sandwich Pattern)										
Course Code: ME19R206			Course Title: Theory of Machines							
Compul	Compulsory / Optional: Compulsory									
Teachin	ng Sche	eme and	l Credits			Exam	ination	Scheme		
L	Р	TU	Total	TH (2Hrs. 30 min)TS1 (1 Hr)TS2 (1 Hr)PRORTW				TW	Total	
3	2	-	5	60	20	20	-	-	25	125

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination Note: For Minimum passing marks under various heads, refer, examination rule AR 26. Two practical skill test are to be conducted. First skill test at mid term and second skill test at the end of the term

Rationale: In industries, the Mechanical Engineers/Technicians are supposed to manage functioning of equipment with proper planning, operation and maintenance of equipment. Such a functional requirement needs knowledge and skills of various motion and force transforming mechanisms and devices, such as four bar mechanism, belt pulley, clutches, flywheel, etc. This course is included in the curriculum to provide such necessary knowledge and skills in the area of mechanical equipment and devices to help in understanding of kinematics & dynamics of different equipment being used in industry. Thus, it is a key course for Mechanical Engineers/Technicians to develop following skills: i. Draw inversions and determine velocity and acceleration of different mechanisms. ii. Construct different types of cam profile for a given data. iii. Calculate loss of power due to friction in various machine elements. iv. Solve problems on power transmission. v. Construct turning moment diagram. vi. Calculate balancing mass and its position.

Course Outcomes: Student should be able to

CO1	Identify kinematic parameters of machine.
CO2	Explain the kinematic/Geometric relationship of motion parameters
CO3	Explain working of flywheel/governor and balancing of machine elements
CO4	Draw profile of radial cam with knife edge / roller follower
CO5	Calculate power transmission in belt drives
CO6	Explain working of dynamometers and power transmission in cutches/brakes

Course Content Details:

Unit No	Topics / Sub-topics
1	 Fundamentals of Kinematics and Mechanisms 1.1. Definition of Kinematics, Dynamics, statics, Kinetics, Kinematics link, Kinematics pair and its types, 1.2. Constrained motion and its types, Kinematic chain and its types, machine and structure. Mechanism, Degree of freedom. 1.3. Inversions of Kinematic Chain: Four bar chain, Single slider Crank and Double Slider Crank Chain
	Course Outcome: CO1Teaching Hours: 6Marks: 8 (R- 4 U-4, A-0)
2	 Kinematic Analysis of Plane Mechanism: 2.1. Concept of relative velocity and relative acceleration of a point on a link, angular acceleration, inter-relation between linear and angular velocity and acceleration. Drawing of velocity and acceleration diagram of simple Mechanism. 2.2. Determination of velocity and acceleration of point on link by relative method (Excluding Coriolis's component of acceleration). 2.3. Analytical method and Klein's construction to determine velocity and acceleration of different links of single slider crank mechanism. Course Outcome: CO2 Teaching Hours: 8 Marks: 12 (R-2, U-4,A-6) Flywheel, Governor and balancing 3.1 Elywheel - Concept function and application of flywheel with the help of turning
3	 S.1. Flywheel: Flywheel –Concept, function and application of flywheel with the help of turning moment diagram for single cylinder 4-Stroke I.C Engine (no numerical) Coefficient of fluctuation of energy, coefficient of fluctuation of speed and its significance. 3.2. Governors: Types, concept, function and application and Terminology of Governors. Comparison between Flywheel and Governor. 3.3. Balancing: Introduction Static Balancing, Dynamic Balancing. Concept of Balancing, balancing of single revolving mass, Graphical and numerical method for balancing several masses in the same plane. Course Outcome: CO3 Teaching Hours: 8 Marks: 10 (R-2, U-4,A-4)
4	 Cam and Followers 4.1. Concept, definition and application of Cams and followers. 4.2. Classification of Cams and followers Different follower motions and their displacement diagrams like uniform velocity, SHM, uniform acceleration and Retardation. 4.3. Drawing of profile of radial cam with knife edge and roller follower with and without offset with reciprocating motion. Course Outcome: CO4 — Teaching Hours : 7 — Marks: 10 (R-4 JI-0 A-6)
5	 Power Transmission 5.1. Belt Drives- flat belt, V-belt & its applications, material for flat and V-belt. Selection of belts, angle of lap belt length Slip and creep. Determination of velocity ratio, of tight side and slack side tension, centrifugal tension and initial tension, condition for maximum power transmission (Simple numerical). 5.2. Chain Drives- Types of chains and sprockets, velocity ratio. Advantages & Disadvantages of chain drive over other drives, Selection of Chain & Sprocket wheels, methods of lubrication.

Unit No	Topics / Sub-topics									
	5.3. Gear Drives – Spur gear terminology, types of gear trains and Law of gearing.									
	Course Outcome:CO5 Teaching Hours : 8 Marks:10 (R-4, U-0, A-6									
	Friction Bearing & Clutches, Brakes and Dynamometer									
	6.1. Definition of friction, its necessity, Laws of friction, Friction between dry surfaces, coefficient									
	of friction. Pivot and collar friction, uniform pressure and uniform wear assumptions, powe									
	absorbed in flat, and conical pivot bearings. Study of single plate, multiple plate, cone									
	centrifugal clutch. Simple numerical on power transmitted by them.									
6	6.2. Definition Classification and comparison between brakes and dynamometers. Construction and									
0	working of Block brake, Band brake, Combined block and brake, Internality expanding									
	shoe brake and disc brake. (Numerical to find braking force and braking torque and power to block hand and block and hand brake)									
	6.3 Construction and working of Rone brake dynamometer. Hydraulic dynamometer and Belt type									
	transmission dynamometer									
	Course Outcome: CO6 Teaching Hours : 8 Marks: 10 (R-2, U-4, A-4									

Suggested Specifications Table (Theory):

Unit	5 3500	Distribution of Theory Marks					
No	Topic Title	R Level	U Level	A Level	Total Marks		
1	Fundamentals of Kinematics and Mechanisms	4	4	0	08		
2	Kinematic Analysis of Plane Mechanism	2	4	6	12		
3	Flywheel, Governor and balancing	2	4	4	10		
4	Cam and Followers	4	0	6	10		
5	Power Transmission	4	0	6	10		
6	Friction Bearing & Clutches, Brakes and Dynamometer	2	4	4	10		
	Total	18	16	26	60		

List of experiments:

Sr.	Ūnit	COs	Title of the Experiments	
No.	No			
1	1	CO1	Describe working of mechanisms and their inversions.	02
2	1	CO1	Mini project : Prepare any two models of mechanisms or inversions.	04
3	2	CO2	Determine and draw velocity and acceleration diagram using relative velocity method for any four problems.	04
4	2	CO2	Draw Klein's Construction for Single slider mechanism.	04

Sr.	Unit	COs	Title of the Experiments	Hours
No.	No			
5	3	CO3	Determine analytically and graphically balancing of several masses rotating in a single plane (Minimum two problems).	04
6	4	CO4	Draw two cam profiles on drawing sheets for the problems having without offset.	04
7	4	CO4	Draw two cam profiles on drawing sheets for the problems having with offset.	04
8	5&6	CO5 CO6	 Mini Project: 1. Compile information from internet related to various mechanisms/elements like piston, crank, connecting rod, cam, clutch, brake, flywheel, governor, or animation of mechanism etc. along with functions of each and prepare presentation. 2. Assignment on nomenclature of Helical Gears and worm and worm wheel 	04
	1	Total	POLITECH	30

References/ Books:

Sr. No.	Title	Author, Publisher, Edition and Year Of publication	ISBN
1	Theory of Machines	R. S. Khurmi and J. K. Gupta, S. Chand and Co. Ltd., 14 th edition, 1976	978-8121-9252-42
2	Theory of Machines	P. L.Ballaney, Khanna Publication, 25 th edition, 1965	978-8174-0912-22
3	Theory of Machines	S.S. Rattan, McGraw Hill India, 5 th edition, July 10, 2019	978-9353-1662-81
4	Theory of Machines	Sadhu Singh, Pearson Education India, 2005	978-8177-5812-70
5	Theory of Machines	Thomson Bevan, Persons Education Ltd, 3 rd edition, 2010	978-8131-7296-56

STATES I

E-References:

- 1. <u>https://nptel.ac.in/</u>
- 2. https://www.slideshare.net/ahirehemant/theory-of-machine
- 3. https://www.youtube.com/watch?v=jzNik6PEKG8
- 4. <u>https://www.youtube.com/watch?v=MJeRFzs4oRU</u>

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	3	3	3	3	2	2	2	2	2
CO2	2	2	3	3	2	2	3	3	2
CO3	2	2	2	3	2	2	3	3	2
CO4	2	2	2	3	2	2	3	3	2
CO5	2	2	2	2	2	2	3	2	2
CO6	2	2	2	2	2	2	3	2	2

CO Vs PO and CO Vs PSO Mapping

Industry Consultation Committee:

Sr. No	Name	Designation	Institute/Organisation
1	Mr. Saurabh Singh	Scientist/Engineer, Liquid Propulsion System Centre,	I.S.R.O. C/o M/s Godrej & Boyce, Vikhroli , Mumbai 400079
2	Mr. Ratan Udasi	Lead Engineer	John Deere Technology Center India, Hadapsar, Pune 411013
3	Mr. Shrikant S. Kulkarni	Senior Divisional Manager (Retd.)	Micro supreme Auto Industry Pvt limited, Opp Shatrunjay temple, Katraj Kondhwa Road, Kondhwa(BK),, Pune, Maharashtra 411048
4	Mr. Avinash S. Sangvikar,	Sr. Lecturer in Mechanical Engineering	Government Polytechnic Thane, Mumbra, Thane 400612
5	Dr. Pradip P. Patil, ,	Assistant Professor	SIES Graduate School of Technology, Nerul, Navi Mumbai, 400 706.
6	Dr. Sunil B. Mahagaonkar	Sr. Lecturer in Mechanical Engineering Department	Government Polytechnic Mumbai, Bandra East, Mumbai, 400051
7	Dr. Avinash A. Lonkar	Sr. Lecturer in Mechanical Engineering Department	Government Polytechnic Mumbai, Bandra East, Mumbai, 400051

Coordinator,

Curriculum Development,

Department of Mechanical Engineering

Head of Department

Department of Mechanical Engineering

LC, Curricul

I/C, Curriculum Development Cell

Program	Programme : Diploma in Mechanical Engineering (Sandwich Pattern)									
Course Code: ME19R301				Course Tit	ile: Mac Dra	chine Dra fting	awing & (Compute	r Aided	
Compul	Compulsory / Optional: Compulsory									
Teaching Scheme and Credits						Exami	nation Sch	ieme		
L	Р	TU	Total	TH (2Hrs 30 min)	TS1 (1 Hr)	TS2 (1Hr)	PR	OR	TW	Total
-	4	-	4	-	-	-	25*		25	50

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination Note: For Minimum passing marks under various heads, refer, examination rule AR 26. Two practical skill test are to be conducted. First skill test at mid-term and second skill test at the end of the term.

Rationale:

A Mechanical Engineer, irrespective of their field of operation in an industry, is expected to possess a thorough understanding of drawing, which includes clear visualization of objects and the proficiency in reading and interpreting a wide variety of production drawings. Besides, they are also expected to possess certain degree of drafting skills depending upon job function, to perform day to day activity i.e. communicating and discussing ideas with supervisors and passing on instructions to subordinates unambiguously.

a MIT

In the engineering world, CAD is revolutionized modern day engineering and widely used to design and develop products to be used by consumers. CAD allows for the easier development of products and product management integration. CAD drawings offer the flexibility to draft and design in a digital sphere, which were previously done by hand. The digital format makes data handling easier, safer, and quicker. Prior hand drawn blueprints can be scanned and then can be expanded upon digitally. Many CAD programs are now using three-dimensional drawings to maximize productivity and provide quicker, better product results, allowing for the development of the tiniest details. CAD's excellent ability for comprehensive documentation and communication allows for an easier product management environment.

Course Outcomes: Student should be able to

CO1	Apply appropriate limits, fits, tolerances & surface finish on drawing.
CO2	Use standard conventions of mechanical elements as per SP-46(1988).
CO3	Interpret & Draw production drawings of components/parts for a given assembly.
CO4	Visualize details of components and draw assembly of components.
CO5	Draw 2-D drawings, assembly drawings using layers, and Print/Publish the drawings.
CO6	Create Isometric, 3-D drawings of mechanical components & Print /Publish the drawings

Course Content Details:

Unit No	Topics / Sub-topics
110	Limits, Fits and Tolerances
1	 1.1 Introduction to ISO system of tolerancing, dimensional tolerances, elements of interchangeable system, hole & shaft basis system, limits, fits & allowances. Selection of fit. (Simple Numerical) 1.2 Geometrical tolerances, tolerances of form and position and its geometric representation. 1.3 Characteristics of surface roughness - Indication of machining symbol showing direction of lay, roughness grades, machining allowances, manufacturing methods. Course Outcome: CO1
	Production Drawing Basics
2	 2.1 Conventional Representations using SP – 46 (1988) 2.1.1 Materials C.I., M.S, Brass, Bronze, Aluminum, wood, Glass, Concrete and Rubber 2.1.2 Long and short break in pipe, rod and shaft. 2.1.3 Ball and Roller bearing, pipe joints, cocks, valves, internal / external threads. 2.1.4 Various sections- Half, removed, revolved, offset, partial and aligned sections. 2.1.5 Knurling, serrated shafts, splined shafts, and chain wheels. 2.1.6 Springs with square and flat ends, Gears, sprocket wheel 2.1.7 Countersunk & counter bore. 2.1.8 Tapers 2.2 Welded Joints: Representation of the following weld & preparing working drawing showing the size of weld, weld length, flush finish etc. Fillet 2.2.1 Square butt 2.2.2 Single and double U 2.2.3 Single and double J 2.2.5 Bevel butt 2.2.6 Edge / seam / bead 2.2.7 Spot weld 2.2.8 All round weld 2.2.9 Flush finish weld
	Introduction to Computer Aided Drafting:
	3.1 Various Software's for Computer Aided Drafting.
3	3.2 CAD initial settings commands.
	3.3 Object Selection methods
	Course Outcome: CO3
	Basic Commands in CAD
	 4.1 Zoom and formatting Commands: 4.1.1 Zoom Commands – all, previous, out, in, extent, realtime, dynamic, window, pan. 4.1.2 Formatting commands - Layers, block, linetype, lineweight, color. 4.2 Draw and Enquiry commands: 4.2.1 Draw Command - Line, arc, circle, rectangle, polygon, ellipse, point, spline, block, batch
4	etc. 4.2.2 Enquiry commands - distance, area, volume, and list command. 4.3 Edit and Modify commands:
	4.3.1 Modify Command - Erase, break, trim, copy, move, mirror, offset, fillet, chamfer, array, extend, rotate, scale, lengthen, stretch, measure, divide, explode, align, join, spline edit Commands.
	4.4 Dimensioning, Text and Plot Commands:4.4.1 Dimensioning commands - Dimension styles, Dimensional Tolerances and Geometrical

	Tolerances, ddedit.					
	4.4.2 Text commands – Text style, dtext, mtext command.					
	4.4.3 Plotting & Publishing a drawing – creating standard template, title block, creating table, Bill					
	plot Commands.					
	4.5 Drawing the given Sketches & Production Drawing of machine components.					
	Course Outcome: CO4					
	Assembly drawing					
	5.1 Assembly to Details: Introduction – basic principles of dismantling process. Preparation of					
	detailed working drawing from given assembly, indicating proper type of fit & tolerance relevant to					
	that fit and the grade of surface finish required. The drawing to be self-explanatory for manufacturing					
	of the components.					
	The objects may be selected from the following & not containing more than 8 parts:					
	5.1.1 Lathe Tail Stock					
	5.1.2 Jigs & Fixtures					
	5.1.3 Piston & connecting rod assembly					
	5.1.4 Gland and Stuffing box Assembly					
_	5.1.5 Valves: Steam Stop Valve & Non – Return Valve					
5	5.1.6 Fast & loose pulley					
	DOLYTEON					
	5.2 Details to Assembly: Preparation of the assembly drawings from the given detailed drawings of					
	the parts of machine unit. Objects may be selected from the following & not containing more than 8					
	parts.					
	5.2.1 Couplings – Universal couplings & Oldnam's Coupling					
	5.2.2 Dearing – Foot Step Dearing & Pedestal Dearing					
	5.2.5 Lattic tool 1 ost, Tall stock					
	5.2.5 Screw Jack					
	5.2.6 Jigs and Fixtures					
	5.2.7 Valves: Steam stop valves & Non Return Valves,					
	Course Outcome: CO5					
	Isometric and 3D Drawings:					
	6.1 Drawing of Isometric Views from orthographic views of objects using CAD.					
6	6.2 Drawing of 3D (pictorial) objects from the Two/Three views of the objects using CAD.					
	WOWNERGE					
	Course Outcome: CO6					

List of experiments:

Sr.	Unit	COs	Title of the Experiments						
No.	No								
1	3	CO1	Assignment on Limit, Fit, Tolerances and Machining Symbols in sketch book	02					
2	4	CO2	Assignment on Conventional Representation as per SP – 46 (1988) in sketch book	02					
3	4	CO2	Assignment on welded joints in sketch book	02					
4	4	CO3	Assignment on Redraw Figures & Isometric View in sketch book (Minimum 4 problems each)	02					
5	1	CO3	Assignment on Assembly to Details in sketch book (Minimum 2 problems)	06					
6	2	CO4	Assignment on Details to Assembly in sketch book (Minimum 2 problems)	06					
7	2	CO3	Generation of production drawings of the machine parts and assembly with appropriate tolerances using layer, blocks & dimensions in CAD.	08					

Sr.	Unit	COs	Title of the Experiments						
No.	No								
8	3	CO5	Draw Assembly of machine components with layer, blocks & dimensions in CAD. (Minimum 2 problems).	08					
9	4	CO5	Draw Detail of assembly of machine components with layer, blocks & dimensions in CAD. (Minimum 2 problems).	08					
10	5	CO6	Draw Isometric drawing in CAD. (Minimum 08 objects)	08					
11	4	CO6	Draw 3D drawings in CAD. (Minimum 06 objects),	08					
			Total	60					

References/ Books:

Sr.	Title	Author, Publisher, Edition	ISBN	
•		Year Of publication		
1	Machine Drawing	N. D. Bhatt, Charotar Publishing House, 50 th edition, 2016	978-9385-0392-32	
2	Production Drawing	L. K. Narayanan, P. Kannaich, K. Venkat Reddy, New Age International Publication, 3 rd edition, 2006	978-8122-4251-85	
3	Machine Drawing	N Sidheswar, P Kannaiah &V V S Sastry, Tata McGraw Hill Education Pvt. Ltd., 2010	978-0074-6033-76	
4	Machine Drawing	N. D.Junnarkar, Pearson, 2006.	978-8131-7067-87	
5	IS Code SP 46 (2003)	Code of practice for general engineering drawing, Engineering Drawing Practice for School and colleges, Bureau of Indian Standards, 9 Bahadur Shah Zafar Marg, New Delhi 110002	81-7061-019-2	
6	AutoCAD: A Problem-Solving Approach	Sham Tickoo, Delmar Cengage Learning (31 January 1998)	978-0766-8012-95	
7	Machine Drawing with AutoCAD	Gautam Purohit & Gautam Ghosh, Pearson Publication	978-1299-4461-82	
8	Mastering AutoCAD and AutoCAD LT 2018	George Omura, BPB Publication	978-1119-3867-97	

E-References:

- 1. <u>http://www.we-r-here.com/cad/tutorials/index.htm</u>
- 2. <u>http://www.cadtutor.net/tutorials/autocad/</u>
- 3. <u>http://www.caddprimer.com/AutoCAD_training_tutorial/AutoCAD_training_lessons.htm</u>
- 4. <u>http://www.autocadmark.com/</u>
- 5. http://www.autocadtutorials.net/
- 6. <u>www.youtube.com</u>
- 7. EKHO Institute presents Professional AutoCAD Training Videos

8. Learning AutoCAD 2012 Tutorial DVD – Publisher – Infinite Skills Inc. Email: directsales@infiniteskills.com

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	3	2	3	3	2	2	3	3	2
CO2	3	2	3	3	2	2	3	3	2
CO3	3	2	3	3	2	2	3	3	2
CO4	3	2	2	2	2	2	3	3	2
CO5	3	2	3	3	2	2	3	3	2
CO6	3	2	3	3	2	2	3	3	2

CO Vs PO and CO Vs PSO Mapping

Industry Consultation Committee:

naus	ry Consultation Commu	POLYTE	AT
Sr. No	Name	Designation	Institute/Organisation
1	Mr. Deepak Parate	Manager - VSRC	FCA Engg India Private Limited, Giga Space IT Park Delta- 1, 4th floor, Office -401 (A & B) Viman nagar Pune 411014
2	Mr. Ratan Udasi	Lead Engineer	John Deere Technology Center India, Cybercity, Magarpatta City, Hadapsar, Pune 411013
3	Mangesh S Mohan	Principal	Agnel Technical College, Bandra west Mumbai 400050
4	Mr.Omkar V Potadar	Assistant Professor	SIES Graduate School of Technology, Sri Chandrasekarendra Saraswati Vidyapuram, Plot 1C-E, Sector V, Nerul, Navi Mumbai – 400 706.
5	Dr. Avinash A Lonkar	Sr. Lecturer in Mechanical Engineering	Government Polytechnic Mumbai, 49, Ali Yavar Jung Marg, Kherwadi, Bandra East, Mumbai, Maharashtra 400051
6	Dr Sunil B Mahagaonkar	Sr. Lecturer in Mechanical Engineering	Government Polytechnic Mumbai, 49, Ali Yavar Jung Marg, Kherwadi, Bandra East, Mumbai, Maharashtra 400051

Coordinator, Head of Department Curriculum Development, Department of Mechanical Engineering Department of Mechanical Engineering _

I/C, Curriculum Development Cell

Principal

Program	Programme: Diploma in Mechanical Engineering (Sandwich Pattern)									
Course Code: ME19R207				Course T	itle: Flui	d Mecha	anics and	Machiner	у	
Compulsory / Optional: Compulsory										
Teaching Scheme and Credits						Exa	mination	Scheme		
L	Р	TU	Total	TH (2 Hrs 30 min)	TS1 (1 Hr)	TS2 (1Hr)	PR	OR	TW	Total
2	2		4	60	20	20			25	125

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination Note: For Minimum passing marks under various heads, refer, examination rule AR26. Two practical skill test are to be conducted. First skill test at midterm and second skill test at the end of the term

Rationale:

Hydraulic machines have important role in water supply, irrigation, power generation and in most of the engineering segments. Knowledge of fluid properties, fluid flow and fluid machinery is essential in all fields of engineering. This course is intended to develop the skills to estimate loss in pipes, efficiency of hydraulic machines like turbines, pump etc., head on a pump and select a pump for a particular application. Diagnose and rectify the faults in pumps and turbines, replace the pressure gauges and other accessories on hydraulic machines and apply their knowledge in hydraulics to select appropriate devices like pressure gauge, valves, flow devices, pipes etc. for different field applications.

Course Outcomes: Student should be able to

CO1	Use manometers and Bourdon gauge to measure pressure.
CO2	Use flow meters to measure the rate of flow.
CO3	Analyze flow through pipes.
CO4	Analyze impact of jet on various types of vanes for optimum efficiency.
CO5	Analyze performance of hydraulic turbine
CO6	Analyze performance of hydraulic pump

Course Content Details:

Unit No	Topics / Sub-topics						
1	 Properties of Fluid and Fluid 1.1. Properties of Fluid: I Kinematic viscosity, 1.2. Fluid Pressure and P intensity, Concept of pressure, Simple and pressure, Center of p 	 ties of Fluid and Fluid Pressure Properties of Fluid: Density, Specific Gravity, Specific volume, Dynamic Viscosity, Kinematic viscosity, Surface tension, Capillarity, Vapor pressure, Compressibility. Fluid Pressure and Pressure Measurement: Fluid pressure, Pressure head, Pressure intensity, Concept of absolute vacuum, Gauge pressure, Atmospheric pressure, Absolute pressure, Simple and differential manometers, Bourdon's tube pressure gauge. Total pressure, Center of pressure (Horizontal, Vertical, Inclined surfaces). 					
	Course Outcome: CO1	Teaching Hours: 05	Marks: 08 (R- 02, U-04, A-02)				

	Fluid Flow.2.1. Types of fluid flow: Laminar, Turbulent, Steady, Unsteady, Uniform, Non uniform, Rotational, Instational One True Three dimensional						
	Irrotational, One, Two, Three dimensional.						
	2.2. Continuity equation. Bernoulli's Incorem 2.3. Venturimeter – Construction. Principle of working. Coefficient of discharge. Derivation of						
2	discharge through Venturimeter						
	2.4. Orifice meter - Construction, Principle of working, Hydraulic coefficients for orifice.						
	Derivation for discharge through orifice meter						
	2.5. Pitot tube- Construction, Principle of working.						
	Course Outcome: CO2 Teaching Hours: 05 Marks: 10 (R-02, U- 04, A-04)						
	Flows Through Pipes.						
	3.1. Laws of fluid friction. Darcy's equation & Chezy's equation for loss of head due to friction.						
	3.2. Minor losses in pipe fittings and valves						
3	3.3. Hydraulic gradient line and 1 otal energy line.						
	3.5. Water hammer phenomenon in pipes causes and remedial action						
	5.5. Water hammer phenomenon in pipes, causes and remedial action						
	Course Outcome: CO3 Teaching Hours: 04 Marks: 10(R-02, U- 04, A-04)						
	Impact of Jets						
4	4.1. Impact of jet on fixed Vertical, moving Vertical flat plates.						
-	4.2. Impact of jet on curved Vanes.						
	Course Outcome: CO4 Teaching Hours: 03 Marks: 06 (R-00, U- 02, A-04)						
	Hydraulic Turbines						
	5.1. Layout & features of hydroelectric power plant.						
	5.2. Classification of hydraulic turbines.						
5	5.3. Construction & working principle of Pelton wheel Turbine, Francis Turbine, Kaplan Turbine.						
	5.4. Draft tubes- types and construction, Concept of cavitations in turbine						
	5.5. Calculation of work done & power efficiency of turbine.						
	Course Outcome: CO5 Teaching Hours: 07 Marks: 13(R-04, U- 06, A-03)						
	Hydraulic Pumps						
	6.1. Centrifugal pumps: Construction, Principle of working, Methods of priming & Cavitation.						
	Types of casing & impellers. Manometric head, Work done, manometric efficiency,						
	mechanical efficiency, Overall efficiency. Velocity diagrams, NPSH. Priming and its						
6	importance.						
	6.2. Reciprocating pumps: Construction, working principles & applications of single & double						
	acting reciprocating pumps, Concept of slip, negative slip. Cavitation and separation. Use of						
	air vessel. Criteria for pump selection						
	Course Outcome: CO6 Teaching Hours: 06 Marks: 13(R-04 U-06 A-03)						

Suggested Specifications Table (Theory):

Unit		Distribution of Theory Marks				
No	Topic Title	R Level	U Level	A Level	Total Marks	
1	Fluid pressure & its measurement	02	04	02	08	
2	Fluid flow	02	04	04	10	
3	Flows through pipes	02	04	04	10	
4	Impact of jets	-	02	04	06	
5	Hydraulic turbines	04	06	03	13	
6	Hydraulic pump	04	06	03	13	
	Total	14	26	20	60	

List of experiments:

Sr.	Unit	COs	Title of the Experiments	
No.	No			
1	1	CO1	Use Bourdons pressure gauge and U tube manometer to measure water pressure and discharge of water using measuring tank and stop watch.	02
2	2	CO2	Verification of Bernoulli's theorem	04
3	2	CO2	Use Venturimeter to measure discharge through a pipe.	02
4	2	CO2	Determination of coefficient of discharge for flow through orifice.	02
5	3	CO3	Determine Darcy's friction factor 'f' in pipes of different diameters.	02
6	3	CO3	Determine frictional losses in sudden expansion, sudden contraction, bend and elbow in pipes	04
7	4	CO4	Assignment on impact of jet	02
8	5	CO5	Determine overall efficiency of Pelton Wheel	04
9	5	CO5	Trial on Francis turbine to determine overall efficiency.	04
10	6	CO6	Determine overall efficiency of Centrifugal Pump	02
11	6	CO6	Determine overall efficiency of Reciprocating Pump.	
		Total		30

References/ Books:

Sr. No.	Title	Author, Publisher, Edition and Year Of publication	ISBN
1	Hydraulics and Fluid	Modi P. N. Seth S. M. Standard	978-8189-4012-69
	Mechanics including	Book House New Delhi, 22nd	
	Hydraulic Machines	Ed., 2013	
2	Fluid Mechanics and	Bansal R. K.	978-8131-8081-53
	Hydraulic Machine	Laxmi Publication Pvt. Ltd. New Delhi, 22nd Ed., 2018	
3	A textbook of Fluid Mechanics	Rajput R. K.	978-9385-4013-74
	and Hydraulic Machines	S Chand and Company Pvt. Ltd.	
		New Delhi, 6 th Ed., 2016	
4	Fluid Mechanics and	Subramanya K.	978-0070-6998-09
	Hydraulic Machines problems	Tata McGraw Hill Co Ltd New	
	and solution	Delhi, 4 th Ed., 2011	
5	Introduction to Fluid	Som S. K. Biswas G	978-0071-3291-94
	Mechanics and Fluid Machines	Tata McGraw Hill Co Ltd	
		New Delhi, 3 rd Ed., 2005	
6	A textbook of Hydraulics,	Khurmi R. S.	978-8121-9016-28
	Fluid Mechanics and	S Chand and Company Pvt. Ltd.	
	Hydraulic Machines	New Delhi, 9 th Ed., 2015	
7	Hydraulics, Fluid Mechanics	Ramamrutham S.	978-9384-3782-71
	and Hydraulic Machines	Dhanpat Rai and Sons	
		New Delhi, 9 th Ed., 2011	
8	Hydraulic Machines	Jagdish Lal Metropolitan 3 rd Ed.,	978-8120-0042-21
		2008	

E-References:

- 1. <u>www.nptel.ac.in/courses</u>
- 2. <u>www.learnerstv.com</u>
- 3. <u>www.ni.com/multisim</u>

CO Vs PO and CO Vs PSO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	2	3	2	2	2	2	3	3	2
CO2	2	3	3	3	2	2	3	2	2
CO3	3	2	3	2	2	2	3	2	2
CO4	2	3	2	2	2	2	2	3	2
CO5	3	3	2	3	2	2	3	3	2
CO6	2	3	3	3	2	2	2	3	2

Sr.	Name	Designation	Institute/Organisation	
No				
1	Mr. Prashant Chavan	Lecturer in Mechanical Engineering	Government Polytechnic Nanded	
2	Mr. Atul Pawar	Lecturer in Mechanical Engineering	VIVA College of Diploma Engineering & Technology, Virar	
3	Mr. Amit Khatale	Team Leader	Tata Technologies Pune	
4	Mr. Tushar Mestry	Deputy Manager Production	Jurchen Technology India Pvt LTD, Boiser	
5	Mr. K. Z. Dhangare	Lecturer in Mechanical Engineering	Government Polytechnic Mumbai	
6	Miss. A. R. Hagawane	Lecturer in Mechanical Engineering	Government Polytechnic Mumbai	

Industry Consultation Committee:

Coordinator,

Head of Department

Department of Mechanical Engineering

Curriculum Development,

Department of Mechanical Engineering

I/C, Curriculum Development Cell

2 16 1

1

Principal

960