Government Polytechnic Mumbai

Department of Instrumentation Engineering

P-19 Curriculum

Semester-V

(Course Contents)

GOVERNMENT POLYTECHNIC MUMBAI

(Academically Autonoums Institute, Government of Maharashtra)

Teaching and Examination Scheme (P19)

With effect from AY 2019-20

Programme	gramme: Diploma in Instrumentation Engineering (Sandwich Pattern)								Term / Semester - V					
		Teaching Hours/Contact Hours					Exan	Examination Scheme (Marks)						
Course	Course Title					Credits	Theo	ory						
Code		L	P	TU	Total		TH	TS1	TS2	PR	OR	TW	Total	
IS19302	Maintenance of Instruments & Systems	3	2	00	5	5	60	20	20		25*		125	
IS19303	Industrial Automation	3	4		7	7	60	20	20	50*			150	
IS19305	Biomedical Instrumentation	3	2	1	5	5	60	20	20		25*		125	
IS19404 IS19405 IS19406	Elective-II Group Distributed Control Systems Agriculture Instrumentation Advance Embedded Systems	3	2		5	-5	60	20	20		25*	25	150	
IS19501	Industrial Management & Entrepreneurship	3	1	2	5	5	-0				25*	25	50	
IS19309	Project	270	4		4	4					50*	50	100	
IS19408	Scilab (Spoken tutorial)	3	4 #	S TED	4 #	604	S.							
	Total	15	18	02	35	35	240	80	80	50	150	100	700	
Total Conta	act Hours				35			I			1			

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment) * Indicates assessment by External Examiner else internal assessment, # indicates Self, on- line learning Mode, @ indicates on line examination

Note: Duration of Examination--TS1&TS2 -1 hour, TH- 2:30 hours, PR/OR – 3 hours per batch, SCA- Library - 1 hour, Sports- 2 hours, Creative Activity-2 hours Self, on- line learning Mode through MOOCS /Spoken Tutorials / NPTEL / SWAYAM / FOSSEE etc.

Coordinator, Curriculum Development, Department of Instrumentation Engg. In-Charge Curriculum Development Cell Head of Departments Department of Instrumentation Engg. Principal

Programme : Diploma in Instrumentation Engineering (Sandwich Pattern)										
Course Code:IS19302			Course Title: Maintenance of Instruments and Systems							
Compul	Compulsory / Optional: Compulsory									
Teachi	ng Sche	eme and	l Credits	Examination Scheme						
TH	PR	TU	Total	TH (2:30Hrs)	TS1 (1 Hr)	TS2 (1Hr)	PR	OR	TW	Total
3	2	-	5	60	20	20		25*		125

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination Note: For Minimum passing marks under various heads, refer, examination rule AR26. Two practical skill test are to be conducted. First skill test at mid-term and second skill test at the end of the term

Rationale:

Engineering maintenance is an important sector of economy to improve efficiency & progress of industries. Instrumentation diploma engineers have major role in maintenance of instruments and systems in process and manufacturing industries. Acquiring knowledge of maintenance and calibration of instruments is essential for instrumentation students. This course tends student to gain the various aspects of maintenance and calibration of different instruments and systems used in process and manufacturing industries.

	241	1
Course Outcomes: Student should be able to	P. 1	1.5
Course Outcomes: Student should be able to		1.0

	teomes. Student should be able to
CO1	Select the maintenance /troubleshooting techniques for given field instruments/systems
CO2	Maintain the given field instruments / systems
CO3	Use of calibration method for maintenance and troubleshooting of field instruments/systems
CO4	Explain calibration of various process parameter equipment/system used in industry
CO5	Prepare the maintenance /troubleshooting and calibration reports

Course Content Details:

Unit No	Topics / Sub-topics									
	Introduction to Maintenance and Troubleshooting									
	1.1	Maintenance- Definition, Need for Instruments/Control Systems Maintenance.								
	1.2	Types of Maintenance: Corrective Maintenance, Preventive, Maintenance and Predictive								
		Maintenance.								
1	1.3	Troubleshooting- Definition, Maintenance versus Troubleshooting								
	1.4	Basic Troubleshooting Techniques- Logical Analysis, Divide and Conquer, Remove and								
		Conquer, and Built in Diagnostics.								
	1.5	Maintenance Department Functions								
	1.6	Job Planning and Scheduling.								

	1.7 Typical Maintenance Worl	order System							
		ekly/fortnightly/monthly/quarter	lv/annuallv).						
	(internet internet), ne	enig for enightery monency quarter							
	Course Outcome:CO1	Teaching Hours :6hrs	Marks: 08(R- 2, U-4, A-2)						
	Field Instruments Maintenance & Troubleshooting								
	2.1 Elements of Preventive Maintenance								
	2.2 Role of Instrument Maintenance Technicians/Supervisors/ Engineers.2.3 Safety Practices to be followed while Maintenance and Troubleshooting								
			e						
		ps/checklist and Troubleshootin	g Guidelines for following field						
	instruments 2.4.1 DP Transmitters								
2		Turking true Flow Motors							
		- Turbine type Flow Meters ble based Temperature Transmitt	010						
		tuator Subsystems.							
		e (I/P) Converter and pressure(P/	(I) to current converter						
	2.4.6 Electro-pneumatic								
	2.4.0 Electro-plicalitatie	varve i ositionei							
	Course Outcome:CO2	Teaching Hours :08hrs	Marks: 10(R- 2, U-4, A-4)						
	Industrial Calibration introdu								
	3.1 Calibration – Definition and Need for Instruments Calibration.								
	3.2 Types of Calibration Standards and Traceability concept								
3	3.3 ISO9000: Requirements of		3						
5		bration versus Loop Calibration.	2						
	3.5 Bench Calibration versus I		5						
	3.6 Calibration Status Labels a	nd NABL Calibration Reports	5						
	Course Outcome: CO3	Teaching Hours :05hrs	Marks: 8 (R- 2, U-4, A-2)						
	Calibration of Temperature an								
		and Standard Temperature Sou	irces						
	4.2 Basic Methods of Temper								
	The second se	Thermocouples using Fixed-poi							
		Thermocouples using Comparis							
4	-	re Transmitters using Temper							
4		re Indicators using Temperatu							
		• • • • •	ulic Dead Weight Tester (DWT)						
		ransmitters using Pressure Cal							
		Differential Pressure (DP) Tran							
	4.10 Calibration of smart Diffe	rential Pressure (DP) Transmi	tter						
	Course Outcome: CO4	Teaching Hours :10hrs	Marks: 12 (R- 2, U-4, A-6)						
	Calibration of Flow and Liqui	5	ts						
		ric Calibration of Liquid Flown							
	5.2 Volumetric and Gravimet	ric- PVTt Calibration of Gas Flo	owmeters						
5		Flowmeters using Master Flow	wmeters						
3	5.4 Calibration of Turbine ty	pe Flow Transmitter							
	5.5 Rotameter Calibration								
		vel Transmitter in Open/Close	d Tanks						
	5.7 Calibration of Capacitanc	e type Level Transmitter							

 ${}^{\rm Page}2$

	5.8 Calibration Air Purge Level Indicator.								
	Course Outcome: CO4	Teaching Hours:10hrs	Marks: 12 (R- 2, U-4, A-6)						
Maintenance and Troubleshooting of PLC AND DCS System									
	6.1 Troubleshooting tips of	6.1 Troubleshooting tips of Automation and Process Control loops							
	6.2 Troubleshoot 4-20 mA Current Loop of 2-Wire/3-Wire Transmitters								
6	6.3 PLC Preventive Maintenance Checklist and troubleshooting								
U	6.4 Distributed Control Sy	stem (DCS) Maintenance and trou	ubleshooting						
	6.5 Calibration & Mainten	ance Report of PLC & DCS							
		-							
	Course Outcome: CO5	Teaching Hours :6hrs	Marks: 10 (R- 2, U-4, A-4)						

Suggested Specifications Table (Theory):

Unit		Distribution of Theory Marks						
No	Topic Title	R Level	U Level	A Level	Total Marks			
1	Introduction to Maintenance and Troubleshooting	2	4	2	8			
2	Field Instruments Maintenance & Troubleshooting	2	4	4	10			
3	Industrial Calibration introduction	2	4	2	8			
4	Calibration of Temperature and Pressure Measuring Instruments	2	4	6	12			
5	Calibration of Flow and Liquid Level Measuring Instruments	2	4	6	12			
6	Maintenance and Troubleshooting of PLC AND DCS System	2	4	4	10			
	Total	12	24	24	60			

List of experiments: Total 10-12 experiments(or turns) out of 15 experiments(or turns)

Sr.	Unit	COs	Title of the Experiments	Hours
No.	No			
1	1	CO1	Study of Instrument Maintenance Tools- Identification, Function, Operation and Safety Precautions	2
2	2	CO2	Maintain Field/bench service of an Air Pressure Regulator.	2
3	3	CO3	Calibration of PT-100 or Thermocouple (J / K type).	2
4	4	CO4	Field/bench service given transmitter-Pressure/DP/Temperature	2
5	5	CO4	Calibration of Capacitance type Level transmitter	2
6	6	CO5	Troubleshoot the PLC based control system	2
7	2	CO2	Field/bench service given Current to Pressure (I/P) converter.	2
8	6	CO5	Troubleshoot 4-20 mA Current Loop of 2-Wire/3-Wire Transmitters	2

Page **3**

9	1	CO1	Prepare Preventive Maintenance Plan (Work Order System)-	2
			(Daily/weekly/fortnightly/monthly/quarterly/annually)	
10	2	CO2	Field/bench service given Control valve	2
11	4	CO4	Calibration of Differential Pressure (DP) transmitter for liquid level/flow measurement	2
12	3,4	CO3, 4	Calibration of PT-100 or Thermocouple (J / K type).	2
13	4	CO4	Calibrate a Pressure Gauge with a pneumatic/hydraulic Dead Weight Tester.	2
14	2	CO2	Maintenance & Calibration of Current to Pressure (I/P) converter.	2
15	2	CO2	Maintenance & Calibration of Pressure to current (P/I) converter.	2
16	6	CO5	Describe preventative maintenance of PLC	2
17	ALL	ALL	Industrial Visit (IDEMI or any process industry)	
		Total		30

Note: Experiments No. 1 to 5 (or 6) are compulsory and should map all units and Cos. Remaining experiments are to be performed as per importance of the topic.

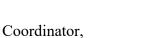
References/ Books:

Sr.	Title	Author, Publisher, Edition and	ISBN
No.	3/2	Year Of publication	
1	Maintenance of Instruments& Systems: Practical Guides For	Lawrence D. Goettsche, ISA, 2005	9781556175121
	Measurement And Control		
2	Calibration: A Technician's Guide	Mike Cable, ISA, 2005	9781556179129
3	Industrial Process Automation Systems Design and Implementation	B. R. Mehta, Y. J. Reddy Elsevier Publisher, 2014	9780128010983
4	Process Instrumentation – Teacher Edition	Brown A. O., Powler, Malcom, Mid-America Vocational Curriculum Consrotium, Stillwater, Okla, 1989	9781292026015
5	Engineering Maintenance – A Modern Approach	B. S. Dhillon, CRC Press, 2002	9781587161421
6	Maintenance and Troubleshooting Instruction Manuals from Industries		

E-References:

- 1. https://instrumentationtools.com
- 2. https://www.instrumentationtoolbax.com
- 3. <u>https://calibrationawareness.com</u>
- 4. https://automationforum.co
- 5. https://automationforum.in

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	3	-	-	1	-	-	1	2	1
CO2	2	2	1	2		-	3	2	3
CO3	2	3	1	3	2	-	3	3	3
CO4	3	1	-	2	2	1	3	3	2
CO5	2	-	-	-	1	1	1	2	2


CO Vs PO and CO Vs PSO Mapping

Industry Consultation Committee:

Sr.	Name	Designation	Institute/Organisation			
No						
1	Mr. T. D. Shinde	Project Engineer	Emerson Process			
		POLYTER	Management Pvt. Ltd.			
2	Mr. C.S. Tamkhane	Lecturer in Instrumentation Engg.	Govt. Polytechnic Pen			
3	Mr. K.U. Dawane	Lecturer in Instrumentation Engg.	Govt. Polytechnic Mumbai			
4	Smt. K. U. Waghmare	Lecturer in Instrumentation Engg.	Govt. Polytechnic Mumbai			

EST.

1960

OWLED^{GE}Head of Department

Curriculum Development,

Department of Instrumentation Engg.

Department of Instrumentation Engg.

I/C, Curriculum Development Cell

Principal

 ${}^{Page}\mathbf{5}$

Progran	Programme : Diploma in Instrumentation Engineering (Sandwich Pattern)									
Course Code: IS19303 Course Title: Industrial Automation										
Compu	Compulsory / Optional: Compulsory									
Teachi	Teaching Scheme and Credits Examination Scheme									
TH	PR	TU	Total	TH (2:30 Hrs)	TS1 (1 Hr)	TS2 (1Hr)	PR	OR	TW	Total
03	04	-	07	60	20	20	50*	-	-	150

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination

Note: For Minimum passing marks under various heads, refer, examination rule AR26. Two practical skill test are to be conducted. First skill test at mid-term and second skill test at the end of the term

POLYTERA

Rationale:

Now a days PLC & SCADA system are used in most of the industries for automation. PLC & SCADA systems are used for monitoring and controlling various plant operations. The knowledge of PLC & SCADA system is essential to the instrumentation diploma holder. This course is introduced with the view that the students of instrumentation must be familiar with PLC & SCADA systems and their application in industries.

Course Outcomes: Student should be able to

Course Outer	
CO1	Identify the role of different component of the given PLC
CO2	Use the given PLC instruction for developing an application
CO3	Understand the operation of SCADA system
CO4	Explain the topology & protocol in the given application
CO5	Develop industrial application using PLC & SCADA

Course Content Details:

Unit No	Тор	Topics / Sub-topics							
	Introduction to automation and PLC								
	1.1	Automation overview, Requirement of automation systems, Architecture of Industrial Automation system							
	1.2	Elements of computer aided measurement and control, man-machine interface, computer aided process control hardware, process related interfaces,							
	1.3	Communication. Advantages of automation							
1	1.4	Introduction of PLC, Block diagram and functions of elements of PLC, Memory organization in PLC, Types of PLC: fixed and modular PLC, Programming devices types, Operation of PLC, Types of Programming Language (Introductory approach), & Advantages & Disadvantages							
	1.5	Types of modules: Input modules and output modules : DC module, AC module, Analog Module. (Basic concepts, block diagram, Wiring diagram, concept of sourcing & sinking)							
	1.6	PLC Status indicators: Fault, Run, Power, Fault							

	1.7 Specifications of PLCCourse Outcome: CO1Teaching Hours : 06 hrsMarks: 8(R- 4, U-4, A-0)
	PLC Instructions
	2.1 Basic concept of ladder
	2.1 Basic concept of ladder 2.2 Rules of ladder, I/O Addressing
	e
	e
2	 2.3.3 Comparison instructions: EQU,NEQ,LES,LEQ,GRT,GEQ,LIM 2.3.4 Timer :TON,TOF,RTO, RES
2	2.3.4 Timer TON, TOP, RTO, RES 2.3.5 Counter: CTU, CTD, High speed Counter
	2.3.6 Math : ADD,SUB,MUL,DIV,
	2.3.7 Advanced Math : SCP
	2.4 Data files
	Simple programs to demonstrate the use of above instructions
	Shiple programs to demonstrate the use of above instructions
	Course Outcome: CO2 Teaching Hours:15 hrs Marks: 20 (R- 2, U-4, A-14
	Introduction to SCADA
	3.1 Definition
	3.2 Block diagram of SCADA, Operation
	3.3 Elements of SCADA: RTU, MTU, Communication interface, HMI
	3.4 Benefits of SCADA3.5 Types of SCADA: Single master single remote, single master multiple control, multiple
3	master multiple control
	3.6 Concept of tag, types of tags, Tag addressing
	3.7 Concept of mimic diagram
	3.8 Concept of Alarm: generation ,types, trend- types
	Course Outcome: CO3 Teaching Hours : 06 hrs Marks: 08 (R-4, U-4, A-0)
	Communication protocols
	4.1 Network topologies- types : bus, ring, star, protocol
	4.2 RS485 - features, working, applications
4	4.3 HART protocol- concept, features, definition, operation, applications
	4.4 Field bus -concept, features, definition, operation, applications
	4.5 Ethernet- concept, features, operation, applications
	Course Outcome: CO4 Teaching Hours : 09 hrs Marks: 12 (R- 2, U- 4, A- 6)
	Applications programs
	5.1 Batch process Control
	5.2 Diesel generator set control
	5.3 Drum/Bottle Filling System
5	5.4 Traffic light control
5	5.5 Elevator control
	5.6 Water distribution system
	(1/() Addressing ladder diagram tag detahaga minia diagram for above annligations Minia
	(I/O Addressing, ladder diagram, tag database, mimic diagram for above applications Mimic
	diagram ,program, device addressing, animation, alarm generation)

Unit		Distribution of Theory Marks					
No	Topic Title	R Level	U Level	A Level	Total Marks		
1	Introduction to PLC	4	4	0	8		
2	PLC Instructions	2	4	14	20		
3	Introduction to SCADA	4	4	0	8		
4	Communication protocols	2	4	6	12		
5	Applications programs	0	0	12	12		
	Total	12	16	32	60		

Suggested Specifications Table (Theory):

List of experiments :Total 10-12 experiments(or turns) out of 15-16 experiments(or turns)

Sr.	Unit	COs	Title of the Experiments				
No.	No						
1	1	CO1	Identify the type of PLC in the lab, PLC component and their role.				
2	2	CO2	Development of basic logic functions using ladder logic.				
3	3	CO3	Configuration of RSVIEW 32 In Touch software	04			
4	4	CO4	Identify the type of communication network in the lab	04			
5	5	CO5	Develop the ladder program and test it : batch process	04			
6	6	CO2	Develop ladder diagram to test OTL & OTU instructions	04			
7	1	CO2	Develop traffic light control using TON, TOF & RTO instruction	04			
8	2	CO2	Develop program for counting the given event using CTU & CTD instruction	04			
9	3	CO2	Develop Program to Verify the given comparison instruction	04			
10	4	CO2	Develop Program to Verify the given Mathematical Instruction	04			
11	5	CO3	Creation of analog, digital tags and addressing of these tags in SCADA for given application	04			
12	6	CO3	Creation and configuration of alarms in SCADA for given application	04			
13	5	CO3	Observation of trends of variables in SCADA for given application	04			
14	6	CO3	Develop ladder logic and graphics for SCADA applications				
15	5	CO5	Develop application using PLC & SCADA				
	1	Total		60			

Note: Experiments No. 1 to 5 (or 6) are compulsory and should map all units and Cos. Remaining experiments are to be performed as per importance of the topic.

Page**3**

References/ Books:

Sr. No	Title	Author, Publisher, Edition and Year Of publication	ISBN
1	Programmable logic controller	V.R. Jadhav Khanna Publishers , New Delhi,2017	9788174092281
2	Programmable logic controller	Petruzella F.D. Tata- McGraw Hill India, New Delhi, Forth edition 2010	9780071067386
3	Programmable logic controller and industrial automation: An introduction	Mitra, Madhuchandra, Sengupta, Samerjit Penram International Publication, New Delhi	9788187972174
4	Practical SCADA for Industry	Bailey, David; Wright, Edwin Newnes International Edition	9780750658058

POLYTEC

E-References:

- 1. <u>https://automationforum.</u>
- 2. http://www.hse.gov.uk/
- 3. <u>http://literature.rockwellautomation.com</u>
- 4. <u>http://www.pc-education.mcmaster.ca/Instrumentation/go_inst.htm</u>

CO **PO1** PO2 **PO3** PO4 PO5 **PO6 PO7 PSO1** PSO2 CO1 2 1 3 1 1 CO2 2 3 3 3 2 3 ED) CO3 2 3 1 1 1 2 2 CO4 3 3 3 1 CO5 3 3 3 3 3 3

CO Vs PO and CO Vs PSO Mapping

Sr.	Name	ne Designation	
No			
1	Mr. Praveen Nalavade	Associate Chief Engineer – Instrumentation & Control Design	Technip FMC
2	Mr. Sanjay Rajput	Lecturer in Instrumentation Engg.	Govt. Polytechnic Jintur
3	Mr. K. U. Dawane	Lecturer in Instrumentation Engg.	Govt. Polytechnic Mumbai
4	Mr. U. B Shinde	Lecturer in Instrumentation Engg.	Govt. Polytechnic Mumbai

Program	Programme : Diploma in Instrumentation Engineering (Sandwich Pattern)									
Course	Course Code: IS19305 Course Title: Biomedical Instrumentation									
Compul	Compulsory / Optional: Compulsory									
Teachi	Teaching Scheme and Credits					Examin	ation Scl	heme		
TH	PR	TU	Total	TH (2:30Hrs)	TS1 (1 Hr)	TS2 (1Hr)	PR	OR	TW	Total
3	2		5	60	20	20		25*		125

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination Note: For Minimum passing marks under various heads, refer, examination rule AR26. Two practical skill test are to be conducted. First skill test at midterm and second skill test at the end of the term

Rationale:

The use of biomedical instruments is increasing day by day in health care. Now day's advanced, complex and precision biomedical instruments are being used in most of the hospitals. Diploma Instrumentation engineer are therefore also supposed to know about the biomedical instrumentation fundamentals, it is important as the students may get employment in hospitals where they will have to understand construction working application of different biomedical instruments. This course tends to develop basic skills in operation, test and maintenance of various biomedical instruments.

Course Outcomes: Student should be able to

CO1	Identify the function of physiology of human body
CO2	Illustrate electrodes for different bio signals generated by human body organs with a suitable recorder
CO3	Select biomedical instrument for biomedical parameters measurement
CO4	Demonstrate life support biomedical instruments/imaging instrument for specified application
CO5	Maintain biomedical instruments with electrical safety

Course Content Details:

Unit No	Topics / Sub-topics						
	Phy	siological system of human body					
	1.1	Man-instrument system:-component block diagram, working					
	1.2	Problems encountered in measuring living system.					
1	1.3	Types of physiological system of human body.					
1	1.4	Cardiovascular system:- Internal structure of Heart, Cardiovascular circulation ,heart sounds					
	1.5	Respiratory system: - physiology, mechanism of breathing, lung volume and capacities.					
	1.6	Nervous system: - structure and functioning of neuron, structure of brain, neuronal					
		communication.					

	Course Outcome: CO1		Teaching Hours :07hrs	Marks:10	(R-2, U-4, A-4)				
	Bioe	electric signal and Electro	odes						
	2.1		tial-concept, schematic diagram	ns and waveform					
	2.2	2.2 Introduction to typical bioelectric signals e.g. ECG, EEG, EMG, ERG, EOG, and EGG.							
	2.3								
	2.4	•	on and diagram of various elect	e e	uring ECG. EMG.				
		EEG.							
2		2.4.1 Microelectro	des						
			trodes:-Suction cup electrode, E	Disposable electrode	e. Floating type				
			etal disk type electrode		e, i iouting type				
		2.4.3 Needle electr							
		-							
		rse Outcome: CO2	Teaching Hours :06hrs	Marks:10 (R-	2, U-4, A-4)				
		nedical Recorders	1 1. 1						
	3.1	Electrocardiograph:- Blo							
	3.2		els describes relating cardiac ac	tivity of the heart.					
3	3.3	Einthoven's triangle.	I DOLVISO						
	3.4		ls used for ECG measurements.						
	3.5	Electro encephalograph:-							
	3.6	Electromyograph:-block	diagram, description.	20					
		5.3	10 - 2 Lans 11	G					
		rse Outcome: CO2	Teaching Hours :10hrs	Marks:12 (R-2	2, U-6 , A-4)				
		nedical Parameters Meas		3 8					
		4.1 Indirect blood pressure measurement- Sphygmo-manometer							
		4.2 Respiration rate measurement- Spirometer							
4	4.3		und- Phono-Cardiograph.						
	4.4		Saturation in Blood Stream and		Oximeter				
		(Diagram, construction and working only of above instruments).							
		rse Outcome:CO3	Teaching Hours :08hrs	Marks:10 (R-2	2, U-2 , A-6)				
		support equipment and		DC 1.51.11.4	(1:				
	5.1	,working, output wavefor	fibrillation, Types of defibrillat	or, DC denominan	or (diagram				
	5.2		bacemaker, Types of pacemaker	r-internal and exter	nal, working of				
		various pacing modes.	, -, -, -, -, -, -, -, -, -, -, -, -, -,						
5	5.3	Ventilators-Basic concep	ot and working						
5	5.4		ays, block diagram of X ray mad						
	5.5	A A	an, block diagram, working and	applications					
	5.6	MRI:-basic principle and	~ ~						
	5.7	Ultrasonography:-basic p	brinciple and application						
	Cou	rse Outcome: CO4	Teaching Hours :12hrs	Marks:14 (R-2	2, U-6 , A- 6)				
	Ele	ectrical safety		``````````````````````````````````````	, , ,				
	6.1	Micro shock & macro sh	ock.						
	6.2	Effects of leakage current	t on human body						
6	6.3	Types of leakage current							
	6.4	Precaution to minimize e	electric shock hazards & leakage	e current.					
	C	nea Outacrea: COF	Tooobing House Ollar N	Lawbould (D. 3. I					
		rse Outcome: CO5	Teaching Hours :02hrs M	1arks:04 (K-2, U)-4, A-U)				

Suggested Specifications Table (Theory):

Unit	Tr 2 - TP:41 -	Distrik	oution of	ution of Theory Marks			
No	Topic Title		U Level	A Level	Total Marks		
1	Physiological system of human body	02	04	04	10		
2	Bioelectric signal and Electrodes	02	04	04	10		
3	Biomedical Recorders	02	06	04	12		
4	Biomedical Parameters Measuring Instruments	02	02	06	10		
5	Life support equipment and imaging system	02	06	06	14		
6	Electrical safety	02	02		04		
	Total	12	24	24	60		

List of experiments: Total 10experiments(or turns) out of 15 experiments(or turns)

Sr.	Unit	COs	Title of the Experiments	Hours		
No.	No		as and the			
1	1	CO1	Use video program to understand the working of cardiovascular system.	2		
2	2	CO2	Identify ECG, EEG, EMG electrodes.	2		
3	3	CO2	Simulate 12 lead ECG signals using virtual lab.	2		
4	4	CO3	Measure blood pressure using sphygmomanometer.			
5	5	simulator.				
6	6	CO5	Prepare a chart of General effects of electric current on human body.	2		
7	1	CO1	Use video program to understand the working of nervous system.	2		
8	3	CO2	Use virtual lab to plot the EMG.	2		
9	4	CO3	Measure respiration rate using spirometer.	2		
10	1	CO1	Use video program to understand the working of respiratory system	2		
11	5	CO4	Use video program to understand the working of X-RAY machine.	2		
12	5	CO4	Use video program to understand the working of MRI.	2		
13	5	CO4	Use video program to understand the working of CT scan.	2		
14	5	CO4	Simulate pacemaker using virtual lab.	2		
15	5	CO4	Use video program to understand the working of Ultrasonography.	2		
			Total	30		

Note: Experiments No. 1 to 6 are compulsory and should map all units and Cos. Remaining experiments are to be performed as per importance of the topic.

Page3

References/ Books:

Sr.	Title	Author, Publisher, Edition and	ISBN
No.		Year Of publication	
1	Handbook of biomedical	R. S. Khandpur	978-9339205430
	instrumentation	McGraw Hill Education	
		Third edition (2014)	
2	Introduction to biomedical	Carr Joseph J. Brown	978-8177588835
	equipment technology	J.M Pearson Education	
		4 th edition (2002)	
3	Biomedical instrumentation	Leslie P Cromwell, Fred J. Weibell,	978-9332556911
	measurements.	Erich A. Pfeiffer	
		Pearson Education India;	
		2 edition (2015)	
4	Medical instrumentation	John G. Webster	978-0471676003
	application & design	John Wiley & Sons	
		4th edition (2009)	

E-References:

- 1. https://www.youtube.com/enter "topic name".
- 2. https://www.electronicsandcommunications.com/2019/06/biomedical-engineering.html

POLYTEC

- 3. <u>https://medlineplus.gov/encyclopedia.html</u>
- 4. https://www.slideshare.net/kerolus/ecg-49879220

CO Vs PO and CO Vs PSO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	1	-	The	2-31	2-1-	-	1	1	-
CO2	2	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	2	(10)	2	2	2
CO3	3	-	3	3	(LE2) G	-	3	3	2
CO4	3	-	3	3	2	-	3	3	2
CO5	3	-	1	-	-	-	2	3	2

ndusti y consultation committee.										
Sr.	Name	Designation	Institute/Organisation							
No			_							
1	Mrs Vaishnavi	Proprioter	Biomedical Solutions							
2	Ms. V. K. Pawar	Lecturer in Instrumentation Engg.	Govt. Polytechnic Karad							
3	Ms. K.U. Waghmare	Lecturer in Instrumentation Engg.	Govt. Polytechnic Mumbai							
4	Mrs. S.T. Shinde	Lecturer in Instrumentation Engg.	Govt. Polytechnic Mumbai							

Industry Consultation Committee:

Coordinator,

Curriculum Development,

Head of Department

Principal

1960

ST

Department of Instrumentation Engg.

Department of Instrumentation Engg.

I/C, Curriculum Development Cell

Programme : Diploma in Instrumentation Engineering (Sandwich Pattern)										
Course Code: IS19404				Course Title:	Distribut	ed Contro	l Syste	ms		
Compulsory / Optional: Optional										
Teachi	ng Sche	eme and	l Credits		E	xamination	n Schen	ne		
TH	PR	TU	Total	TH (2:30 Hrs)	TS1 (1 Hr)	TS2 (1Hr)	PR	OR	TW	Total
03	02	-	05	60	20	20	-	25*	25	150

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination Note: For Minimum passing marks under various heads, refer, examination rule AR26. Two practical skill test are to be conducted. First skill test at midterm and second skill test at the end of the term

Rationale:

In today's competitive production environment, process industries demand a totally integrated control and optimization solution that can increase productivity, reliability, and quality while minimizing cost. Distributed Control System (DCS) is designed to meet these customers' needs. The distributed architecture of DCS reduces impact from loss of system components and ensures production continuity. The component and network redundancy guarantees the operability of critical system and control functions.DCS also ensures operation safety and effectiveness. The DCS advanced solutions deliver operating efficiency improvement, productivity gain. Unit reliability and availability enhancement, and overall cost reduction

Course Outcomes: Student should be able to

CO1	Identify the different components of given DCS
CO2	Describe the role of given module in DCS.
CO3	Classify displays used in DCS
CO4	Understand alarm management system in DCS.
CO5	Develop simple PID control loop with Alarm, control, trends using given DCS system.

Course Content Details:

Unit No	Topics / Sub-topics						
	Introduction to distributed co	ntrol system(DCS)					
	1.1 Introduction to DCS.						
	1.2 Direct Digital control, centralized computer system, Distributed control.						
	1.3 DCS Evolution history.						
1	1.4 Generalized DCS architecture and its feature.						
	1.5 Main difference between PLC and DCS.						
	1.6 DCS Suppliers and their	system name.					
	Marks: 12(R- 6, U-4, A-2)						

	DCS MODULES:						
	2.1 Input and output module: Local, Remote, rack mounted.						
	2.2 Controller Module:						
	2.3 Power supply module						
	2.4 Communication Module						
2	2.5 Workstation: Operator and Engineer						
	2.6 Data Highway and local IO bus						
	2.7 Redundancy in the DCS						
	(Functions, types and specification as per above modules)						
	Course Outcome: CO2 Teaching Hours :09 hrs Marks: 12 (R- 2, U- 4, A- 6)						
	DCS DISPLAYS:						
	3.1 Standard Display: Overview display, unit or area Overview display, Group display,						
	Graphics display, trend display, Loop display.						
3	3.2 User -defined display: Plant mimic display, area mimic display, Group mimic diagram and						
	batch control system diagram.						
	batch control system diagram.						
	Course Outcome:CO3Teaching Hours : 09 hrsMarks: 12 (R-2 , U- 4, A- 6)						
	DCS Alarm Management and Database						
	4.1 Alarm reporting, types of Alarm generated and acceptance of alarms						
	4.2 The different types of logs and report that can be configured on DCS system,						
4	4.3 Data history use in logs, reports and trend display.						
-	4.4 The need for different security levels to various operating parameters configuration						
	(Operator, Engineer, supervisor)						
	Organization of system database in one folder on database server						
	Course Outcome: CO3 Teaching Hours :09 hrs Marks: 12 (R-2, U-10-, A-0)						
	DCS Programming:						
	5.1 Introduction						
	5.2 DCS Programming Language requirement.						
	5.3 DCS Programming language(Ladder logic, Functional block diagram Structured						
5	text, Sequential flow chart)						
_	5.4 FBD/SFC/Ladder language example						
	5.5 Example of data acquisition5.6 Example of Control Logic						
	5.6 Example of Control Logic5.7 Example of Alarm system						
	5.7 Example of Alarm System						
	Course Outcome: CO5Teaching Hours :10 hrsMarks: 12 (R-0,U-0, A-12)						

Suggested Specifications Table (Theory):

Unit	T	Distri	bution of Theory Marks			
No	Topic Title	R Level	U Level	A Level	Total Marks	
1	Introduction to distributed control system(DCS)	6	4	2	10	
2	DCS MODULES	2	4	6	12	
3	DCS DISPLAYS	2	4	6	12	
4	DCS Alarm Management and Database	2	10	0	12	

 ${}^{Page}2$

5	DCS Programming	0	0	12	14
	Total	12	22	26	60

List of experiments: Total 10-12 experiments(or turns) out of 15 experiments(or turns)

Sr.	Unit	COs	Title of the Experiments	Hours
No.	No			
1	1	CO1	Preparing URS (User requirement specification) and FRS(Functional requirement specification) for any small Automation process in the lab.	02
2	2	CO2	Understand the Input output module and controller module with detailed specification.	02
3	3	CO3	Study of communication modules with detailed communication protocol.	02
4	4	CO4	Study of Workstation: Operator and Engineer	02
5	5	CO5	Prepare cause and effect document for any small process and develop control logic diagram for the same.	02
6	6	CO2	Prepare small process Graphical representation and display on HMI screen.	02
7	1	CO2	Develop and implement temperature measurement in DCS trainer setup using DCS programming language SFC	02
8	2	CO2	Develop and implement level measurement in DCS trainer setup using DCS programming language SFC.	02
9	3	CO2	Develop and implement Flow measurement in DCS trainer setup using DCS programming language SFC.	02
10	4	CO2	Develop and implement temperature measurement in DCS trainer setup using DCS programming language FBD	02
11	5	CO3	Develop and implement level measurement in DCS trainer setup using DCS programming language FBD.	02
12	6	CO3	Develop and implement Flow measurement in DCS trainer setup using DCS programming language FBD.	02
13	5	CO3	Develop and implement pressure measurement in DCS trainer setup using DCS programming language FBD/SFC.	02
14	6	CO3	Developing and configuring Graphical user interface for any two control loop.	02
15	5	CO5	Develop and implement PID level Control loop in DCS trainer setup using DCS programming language FBD/SFC	02
		Total		

Note: Experiments No. 1 to 5 (or 6) are compulsory and should map all units and Cos. Remaining experiments are to be performed as per importance of the topic.

References/ Books:

Sr.	Title	Author, Publisher, Edition and	ISBN
No.		Year Of publication	
1	Instrument Engineers	Bela G. Liptak,	9781439863435
	Handbook,Volume3: Process	Eren CRC Press, Fourth Edition	
	Software	2016	
	and Digital Networks		

2	Industrial Process Automation	B.R. Mehta, Y.	9780128010983
	Systems: Design and	Jaganmohan Reddy	
	Implementation	Butterworth-Heinemann, 2014	
3	Control Systems (DCS): For	IDC Technologies	
	Engineers and Technicians		
4	Industrial Instrumentation &	Singh S. K.	9780070262225
	Control Third Edition	Tata McGraw-Hill Education,2009	

E-References:

- 1. <u>http://www.pc-education.mcmaster.ca/Instrumentation/go_inst.htm</u>
- 2. <u>https://automationforum.in</u>
- 3. <u>http://www.hse.gov.uk</u>
- 4. http://literature.rockwellautomation.com/

CO Vs PO and CO Vs PSO Mapping

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	2	2		bor	TUE	200	3	1	1
CO2	2	2	5	and a	3	N°C.	2	1	1
CO3		15	3	3	£15		3	1	3
CO4		12	3	3	35		3	1	3
CO5		0	3	3	1	2	3	2	3

Industry Consultation Committee:

Sr. No	Name	Designation	Institute/Organisation
1	Mr H. K. Kadam	Rtd. HR Manager	RCF Ltd.
2	Mr. Sanjay Rajput	Lecturer in Instrumentation Engg.	Govt. Polytechnic Jintur
3	Mr. S.T. Shinde	Lecturer in Instrumentation Engg.	Govt. Polytechnic Mumbai
4	Mr. U. B Shinde	Lecturer in Instrumentation Engg.	Govt. Polytechnic Mumbai

Coordinator,

Curriculum Development,

Head of Department Department of Instrumentation Engg.

Department of Instrumentation Engg.

I/C, Curriculum Development Cell

Principal

Program	Programme : Diploma in Instrumentation Engineering (Sandwich Pattern)									
Course Code: IS19405				Course Title: Agriculture Instrumentation						
Compu	Compulsory / Optional: Optional									
Teaching Scheme and Credits			l Credits	Examination Scheme						
TH	PR	TU	Total	TH (2:30Hrs)	TS1 (1 Hr)	TS2 (1Hr)	PR	OR	TW	Total
03	02	-	05	60	20	20	-	25*	25	150

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination Note: For Minimum passing marks under various heads, refer, examination rule AR26. Two practical skill test are to be conducted. First skill test at mid-term and second skill test at the end of the term

Rationale:

Agricultural industries are mostly dependent on nature behaviour. To avoid crop failure, increasing crop quantity and quality, protecting crop, etc is a big challenge for farmers as well as for agro industries. It will be very appropriate to provide knowledge of sensors used in agriculture field, know green house automation schemes and automation associated with agriculture and food processing plants/ systems to instrumentation and control engineers.

Course (Course Outcomes: Student should be able to					
CO1	Characterize problems and possible technological solution of agro industries.					
CO2	Explain soil properties and sensors used to measure					
CO3	Demonstrate continuous and batch process					
CO4	Familiarize with current literature in irrigation system associated agricultural instrumentation					
CO5	Develop automation scheme for green house					

WOWLEDG

Course Content Details:

Unit No	Topics / Sub-topics				
	Introduction				
	1.1 Necessity of instrumentation & control for agriculture and food processing				
	1.2 Remote sensing				
1	1.3 Biosensors in agriculture				
	1.4 Standard for food quality				
	Course Outcome: CO1Teaching Hours : 7 hrsMarks: 10(R- 4, U-4, A-2)				
	Soil science and sensors				
	2.1 Engineering properties of soil pH, conductivity, resistivity, temperature, soil moisture and				
2	salinity, ion concentration measurement.				
	2.2 Method of soil analysis, permeability & seepage analysis, shear strength, Mohr's circle of stress, active & passive earth pressures.				

	2.3 Instrumentation for en	vironmental conditioning of seed	germination and growth				
	Course Outcome: CO2	Teaching Hours : 10 hrs	Marks: 14 (R-2, U-4, A-8)				
	Food Processing						
		ar plant & instrumentation set up f	for it,				
		nenter & control (batch process),					
3		y industry & instrumentation set u					
		ol process & instrumentation set u	up for it				
	3.5 Oil extraction plant a	nd instrumentation set up for it.					
	Course Outcome: CO3	Teaching Hours : 10 hrs	Marks: 14 (R-2, U-4, A-8)				
	Instrumentation in Irrigation						
	4.1 Water distribution & management control,						
4	4.2 Auto drip & sprinkler irrigation systems,						
_	4.3 Irrigation canal management systems, upstream & downstream control concept,						
	4.4 SCADA for DAM parameters & control						
		POLYTECH					
	Course Outcome: CO4	Teaching Hours : 8 hrs	Marks:10 (R-2, U-6, A-2)				
	Topic Title: Green-houses &						
	5.1 Concept & construction of green houses, merits & demerits						
	5.2 Ventilation, cooling & heating, wind speed, temperature & humidity, rain gauge, carbon						
5		dioxide enrichment measurement & control.					
Э	5.3 Leaf area length evaportranspiration, temperature, wetness & respiration measurement						
	5.4 Data logging, electromagnetic radiations photosynthesis, infrared & UV bio sensor methods in agriculture						
	5.5 Agro-metrological instrumentation weather stations						
		1 5 W 83					
	Course Outcome: CO5	Teaching Hours : 10 hrs	Marks:12 (R-2, U-6, A-4)				

Suggested Specifications Table (Theory):

Unit		Distribution of Theory Marks					
No	Topic Title	R Level	U Level	A Level	Total Marks		
1	Introduction	4	4	2	10		
2	Soil science and sensors	2	4	8	14		
3	Food Processing	2	4	8	14		
4	Instrumentation in Irrigation	2	6	2	10		
5	Green houses & instrumentation	2	6	4	12		
	Total	12	24	24	60		

Sr.	Unit	COs	Title of the Experiments	Hours
No.	No			
1	1	CO1	To study different bio sensors used in agro automation	02
2	2	CO2	To test soil resistivity moisture and salinity	02
3	3	CO3	To study flow diagram of dairy industry and instrumentation set up	02
4	4	CO4	To study application of SCADA for DAM and irrigation system.	02
5	5	CO5	To study heating cooling and ventilation control in Green house	02
6	6	CO2	To test soil pH, conductivity	02
7	1	CO3	To study juice extraction control set up	02
8	2	CO3	To study flow diagram of sugar industry and instrumentation set up	02
9	3	CO4	To study Auto drip irrigation systems	02
10	4	CO5	To study sprinkler irrigation systems	02
11	5	CO6	To study heating , temperature & humidity control in Green house	02
12	6	CO1	To study flow diagram of Juice extraction control process	02
13	5	CO2	To study UV biosensors in Green house	02
14	6	CO3	Case study on agriculture instrumentation	02
15	5	CO5	Case study on greenhouse instrumentation	02
	1		ESTD. 1960 Total	30

List of experiments: Total 10-12 experiments(or turns) out of 15 experiments(or turns)

Note: Experiments No. 1 to 5 (or 6) are compulsory and should map all units and Cos.Remaining experiments are to be performed as per importanceof the topic.

References/ Books:

Sr.	Title	Author, Publisher, Edition and	ISBN
No.		Year Of publication	
1	Instrumentation handbook-	Bela G. Liptak.,	9780801955198
	process control	Published by Chilton,	
		Philadelphia (1969)	
2	Process control and	C.D. Johnson	9780471057895
	instrumentation technology	Published by Wiley	
3	Principle of Farm Machinery	Kepner, Robert Allen	9780870551246
		Publisher: Avi Pub. Co	
		Publication Date: 1972	
4	Agricultural Engineering	Jack Rudman	9780837339467
		Published by National Learning	
		Corporation (2004)	

Page **3**

5	Environmental Engineering	Jeffrey Jeffrey Peirce Published by Butterworth- Heinemann (2003)	9780750672948
6	Automatic Control for food	Moreira, Rosana G.	9780834217812
	processing system,	Published by Springer (2001)	

E-References:

- 1. <u>https://innotechtoday.com/automated-agriculture/</u>
- 2. <u>https://www.engineering.com/DesignerEdge/DesignerEdgeArticles/ArticleID/16653/Smart-FarmingAutomated-and-Connected-Agriculture.aspx</u>
- 3. https://www.eolss.net/Sample-Chapters/C18/E6-43-35-04.pdf
- 4. <u>https://www.climatecontrol.com/blog/greenhouse-control-systems/</u>
- 5. <u>https://autogrow.com/your-growing-environment/automated-greenhouse</u>

CO VsPO and CO Vs PSOMapping

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	2	2	1	(9)	CAP -	11	2	2	1
CO2		2	6	3	TIR	2 2	3	3	1
CO3			2	3	3		3	2	3
CO4			3	3	HD	M	3	2	2
CO5			3	3	2	94	3	3	3

Industry Consultation Committee:

Sr. No	Name	Designation	Institute/Organisation
1	Mr. H.K. Kadam	Rtd. HR Manager	RCF Ltd. Chembur
2	Mr S.R. Shiledar	Assistant Prof Instrumentation	Govt college of Engg. Jalgaon
3	Mr. F. S. Bagwan	Lecturer in instrumentation Engg.	Govt. Polytechnic Mumbai
4	Mr.U. B Shinde	Lecturer in instrumentation Engg.	Govt. Polytechnic Mumbai

1960

Coordinator, Curriculum Development, Department of Instrumentation Engg. Head of Department Department of Instrumentation Engg.

I/C, Curriculum Development Cell

Program	Programme : Diploma in Instrumentation Engineering (Sandwich Pattern)									
Course	Course Code: IS19406 Course Title: Advance Embedded Systems									
Compu	Compulsory / Optional: Optional									
Teachi	ng Sche	eme and	l Credits			Examinati	on Sche	eme		
TH	TH PR TU Total			TH (2:30 Hrs)	TS1 (1 Hr)	TS2 (1Hr)	PR	OR	TW	Total
3	2		5	60	20	20		25*	25	150

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination Note: For Minimum passing marks under various heads, refer, examination rule AR26. Two practical skill test are to be conducted. First skill test at mid-term and second skill test at the end of the term

Rationale:

Embedded systems play a vital role in characterizing, developing as well as creating new processes in automation. They address several requirements of automation and thus enable highly project specific solutions. A new age of automation began with networking as a common place, the total networking of intelligent digital systems. In the future, machines should be able to control each other through new information and communication techniques. Production processes such as production, planning and service should be automatically optimized. The entire process should occur in real time as much as possible in order to achieve a self-organizing production system. This course intends to develop skills to maintain and build the automated and real time systems.

Course Outcomes: Student should be able to

CO1	Comprehend the meaning of embedded system
CO2	Interpret the various communication interfaces
CO3	Develop basic application circuits using Arduino board
CO4	Use memories and peripherals in basic embedded applications
CO5	Interpret the features of Real Time Operating System

Course Content Details:

Unit No	Topics / Sub-topics
	Basics of Embedded Systems
	1.1 Definition of Embedded System
	1.2 Block Diagram of Embedded System
	1.3 Embedded System Architectures: Von-Neumann/Harvard, RISC/CISC, DSP
	1.4 Characteristics of Embedded Systems: size, performance, flexibility, maintainability, latency,
1	throughput, correctness, processor power, power consumption, safety, NRE cost, cost
	1.5 Classification of Embedded Systems:
	1.5.1 Based on Performance of microcontroller: Small scale, Medium scale, Sophisticated
	1.5.2 Based on performance and functional requirements: Real time, Standalone, Networked,
	Mobile

	1.6 Applications of Embedded Systems
	Course Outcome: CO1 Teaching Hours : 06hrs Marks: 10 (R-04, U-04, A-02)
2	 Communication Interfaces 2.1 Modes of communication: Serial/Parallel, Synchronous/Asynchronous 2.2 Onboard Communication Interfaces: I²C, CAN, SPI, PSI 2.3 External Communication Interfaces: RS232, USB 2.4 Wireless Communication Interfaces: IrDA, Bluetooth, Zigbee (Features and basic principle, difference)
	Course Outcome: CO2 Teaching Hours : 09 hrs Marks: 12 (R-02, U-06, A-04)
3	 AVR Microcontroller 3.1 Features of ATMega 328P Microcontroller and Arduino 3.2 Arduino: open source community 3.3 Arduino boards based on Atmrga328 Microcontroller 3.4 Functional Block Diagram of Arduino Uno 3.5 Functions of each pin of Arduino Uno 3.6 Arduino Programming 3.6.1 Data types, Variables, Operators 3.6.2 IO functions 3.6.3 PWM function 3.6.4 Random Functions 3.6.5 Interrupts 3.6.6 Serial Communication:RS232, I²C, SPI 3.7 Basic IO Interfacing 3.7.1 Sensors: Humidity, Temperature, Ultrasonic, PIR 3.7.2 Motors: DC, Servo, Stepper
4	Course Outcome: CO3 Teaching Hours : 13 hrs Marks: 14 (R-02, U-04, A-08) System Memory and Peripherals 4.1 Memory System Architecture 4.1.1 Cache Memory, Virtual Memory 4.1.2 Memory Management Unit 4.1.3 Address translation 4.2 Memory Technologies 4.2.1 SRAM, DRAM 4.2.2 ROM, EPROM, E ² PROM, NVROM 4.3 Peripheral Devices 4.3.1 Watchdog Timer 4.3.2 DMA Controller
	Course Outcome: CO4Teaching Hours : 07 hrsMarks: 10(R-02, U-04, A-04)Real Time Operating System
5	 5.1 Types of Operating System 5.2 Architecture of an RTOS 5.3 Characteristics of an RTOS: Consistency, Scalability, Reliability, Performance, Predictability

 ${\tt Page}2$

- 5.4 Tasks, process and threads
- 5.5 Multiprocessing and Multitasking: Co-operative, Preemptive, Non-Preemptive multitasking
- 5.6 Scheduling Algorithms: Preemptive, Non-Preemptive, Round Robin
- 5.7 Interrupt handling, Semaphore, Deadlock

Course Outcome: CO5 Teaching Hours : 10 hrs Marks: 14 (R-02, U-06, A-06)

Suggested Specifications Table (Theory):

Unit		Distribution of Theory Mar			Marks
No	Topic Title	R Level	U Level	A Level	Total Marks
1	Basics of Embedded Systems	04	04	02	10
2	Communication Interfaces	02	06	04	12
3	AVR Microcontroller	02	04	08	14
4	System Memory and Peripherals	02	04	04	10
5	Real Time Operating System	02	06	06	14
	Total	12	24	24	60

List of experiments: Total 10-12 experiments(or turns) out of 15 experiments(or turns)

Sr. No.	Unit No	COs	Title of the Experiments	Hours
1	1	CO1 Identify the family of given microcontrollers on the basis of IC number and architecture.		2
2	2	CO2	To study sensor information acquisition in Arduino IDE using USB serial interface.	2
3	3	CO3	To interface Humidity/ soil moisture sensor module with Arduino.	2
4	4	CO4	To read and write data in internal E ² PROM memory in Arduino board.	2
5	5	CO5	To study Rtuin OS or Duin OS or any other free RTOS for Arduino and test simple looping program.	2
6	CO1 Identify the different blocks and pins on given Arduino development			2
7	2	CO2	Interface GSM module with Arduino board using RS 232 interface to send and receive message.	2
8	3	CO3	To implement Voltmeter using Arduino Board.	2
9	4	CO4	To interface external SRAM memory using Arduino board.	2
10	103CO3Interface RTC module with Arduino board using I²C to read time/ date and store data in SRAM.		2	
11	4 CO4 To control Motor Speed using Arduino Board.		2	
12	3	CO3	Interface Bluetooth module with Arduino board and transfer data to and fro.	2

Page

13	4	CO4	To implement Ultrasonic Range Finder/level controller using Arduino Board.	2
14	4	CO4	To implement LPG Leakage Detector Board.	2
15	4	CO4	To implement Arduino Camera Interface.	2
			Total	30

Note: Experiments No. 1 to 5 (or 6) are compulsory and should map all units and COs. Remaining experiments are to be performed as per importance of the topic.

References/ Books:

Sr. No.	Title	Author, Publisher, Edition and Year Of publication	ISBN
1	Embedded System Architecture, Programming and Design	Rajkamal, McGraw Hill Education; 3 rd edition, 2017	978-9332901490
2	An Embedded Software Primer	David E. Simon, Addison-Wesley Professional, 1 st edition, 1999	978-0201615692
3	Introduction to Embedded Systems	Shibu K V, McGraw Hill Education India Private Limited; 2 nd edition, 2017	978-9339219680
4	Embedded Systems	B Kanta Rao, Prentice Hall (I), 1 st edition, 2011	978-8120340817
5	Embedded System Design	Steve Heath, Newnes, 2 nd edition, 2002	978-0750655460
6	Arduino for Beginners: Essential Skills Every Maker Needs	John Baichtal, Que Publishing, 1 st edition, 2013	978-0789748836
7	Introduction to Arduino: A piece of cake!	Alan G. Smith, CreateSpace Independent Publishing Platform, 1 st edition, 2011	978-1463698348
8	Getting Started with Sensors	Kimmo Karvinen and Tero Karvinen, Maker Media, 1 st edition, 2014	978-1449367084

E-References:

- 1. https://nptel.ac.in/courses/108/105/108105057/
- 2. https://nptel.ac.in/courses/106/105/106105086/
- 3. https://nptel.ac.in/courses/106/105/106105159/
- 4. <u>https://nptel.ac.in/courses/106/105/106105159/</u>
- 5. <u>https://nptel.ac.in/courses/106/105/106105159/</u>
- 6. <u>https://nptel.ac.in/courses/106/105/106105166/</u>
- 7. <u>https://www.tutorialspoint.com/embedded_systems/ index.htm</u>
- 8. <u>https://www.tutorialspoint.com/arduino/ index.htm</u>
- 9. https://www.tutorialspoint.com/operating_system/index.htm

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	1		1	1	1			1	1
CO2	1	1	1	1	1		1	2	2
CO3	1	3	2	2	3	2	2	2	2
CO4	1	1	2	1	1		1	2	1
CO5	1	1	2	2	3	1	2	1	2

CO Vs PO and CO Vs PSO Mapping:

Industry Consultation Committee:

Sr. No	Name	Designation	Institute/Organisation
1	Mr. Pratik Tirodkar	Proprietor	PNT Solutions Pvt. Ltd. Mumbai
2	Mr. Anil Gurav	Lecturer in Electronics	St. Xavier Technical Institute. Mahim, Mumbai
3	Mrs. K. U. Waghmare	Lecturer in Instrumentation Engg.	Government Polytechnic, Mumbai
4	Mr. F. S. Bagwan	Lecturer in Instrumentation Engg.	Government Polytechnic, Mumbai

RST

10

Coordinator,

Head of Department,

1960

Curriculum Development,

Department of Instrumentation Engineering

Department of Instrumentation Engineering

I/C, Curriculum Development Cell

Principal

Page **J**

Program	Programme : Diploma in Instrumentation Engineering (Sandwich Pattern)											
Course Code:IS19501				Course Title: Industrial Management & Entrepreneurship								
Compul	Compulsory / Optional: Compulsory											
Teachi	Teaching Scheme and Credits				Examination Scheme							
TH	PR	TU	Total	TH (2:30Hrs)	TS1 (1 Hrs)	TS2 (1 Hrs)	PR	OR	TW	Total		
3	-	2	5	-	-	-	-	25*	25	50		

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination Note: For Minimum passing marks under various heads, refer, examination rule AR26. Two practical skill test are to be conducted. First skill test at mid-term and second skill test at the end of the term.

Rationale:

Diploma pass out students are normally placed at the supervisory or Junior Engineer level when they go to industries. they are act as link between higher management & workers to handle material and machinery to get the targeted output. This subject gives knowledge of managing different resources of the organizations effectively and as an Entrepreneur create a new idea of project & implement it to opens up many employment opportunities. This course deals with different aspects of management, which helps technician to manage the changed environment in the industry.

0000000	
CO1	Understand the different business types and management functions
CO2	Describe the functions of different departments
CO3	Explain industrial safety rules and act.
CO4	Manage purchase inventory and project
CO5	Develop the awareness about entrepreneurship and collect information of support systems to entrepreneur.

Course Outcomes: Student should be able to

Course Content Details:

Unit No	Topics / Sub-topics						
	Overview of Business Management Process						
	1.1 Definition of Business,						
	1.2 Types of Business- Service, Manufacturing & Trades						
	1.3 Globalization: introduction, Advantages & Disadvantages						
1	1.4 Management- Various Definitions						
	1.5. Levels of Management						
	1.6. Basic Functions of Management- Planning, Organizing, Staffing, Directing & Controlling						
	1.7. Fourteen Principles of Management						
	Course Outcome:CO1 Teaching Hours :08 hrs						

	Topic Title: Organizational and Financial Management								
	2.1. Organization- Definition and Types								
2	2.2 Forms of Ownership, Proprietorship, Partnership, Joint Stock Company, Co-Operative Society,								
	Government Sector.								
	2.3 Human Resource Management- Personnel management Definition & Functions.								
	2.4 Financial Management: Objectives, Capital types and Source of capital								
	2.5 Budgets: Types of budget, profit & loss account & Balance Sheet								
	Course Outcome:CO2 Teaching Hours :08 hrs								
	Topic Title: Industrial Safety and Management								
	3.1. Causes of Accident								
	3.2. Safety Precautions								
3	3.3. Introduction To:								
	3.4. Factory Act 1948								
	3.5. Workmen Compensation Act								
	Course Outcome:CO3 Teaching Hours :6 hrs								
	Topic Title: Materials and Project Management								
	4.1. Inventory Management: Definition of Inventory and inventory Control, Objectives of								
	Inventory Control								
	4.2. ABC Analysis, Graphical Representation								
	4.3. Economic Order Quantity (E.O.Q.): Graphical Representation and Calculation of E, O.Q.								
	4.4 Purchasing: Function of Purchasing								
4	4.5 Project Management: Definition and Meaning of Project								
	4.6 Introduction to C.P.M & P.E.R.T, Preparation Of Network								
	4.7 Concept of Break-Even Analysis								
	4.8. Project Risk and Quality Management: Qualitative and Quantitative Analysis of Risks and Quality.								
	Quality.								
	Course Outcome:CO4 Teaching Hours :10 hrs								
	Topic Title: Entrepreneurship & Business opportunity								
	5.1. Definition of entrepreneur, entrepreneurship								
	5.2. Characteristics of entrepreneurship								
	5.3. Functions of entrepreneurship								
5	5.4. Barriers of entrepreneurship								
	5.5 Identifying trends, opportunities and ideas of Business								
	5.6 Marketing Concept								
	Course Outcome:CO5 Teaching Hours:08 hrs								
	Topic Title: Scope and Support Systems								
	6.1. Trading, Consultancy, Franchises, Service Sectors, Emerging Areas								
	6.2 Small Enterprises								
	6.2.1. Definition, Characteristics & Types								
	6.2.2. Problems Faced by SSI								
6	6.2.3. Industrial Sickness- Causes & Corrective Measures								
	6.3. Functions & Supportive Institutes								
	(MSME, SIDBI, DICS, SSIB, NSIC, MITCON, TCO's, MIDC)								
	6.4. Government Agencies								
	Course Outcome: CO5 Teaching Hours :5 hrs								

 ${}^{\rm Page}Z$

Term Work:

Sr. No.	Unit No	COs	Title of the Experiments	Hours
1	1	CO1	Study different Types of Business and List your interest and hobbies and list your business idea related to each interest.	2
2	2	CO2	Study of Different forms of organization and write procedure for training and recruitment	2
3	3	CO3	Make detail survey on Industrial Safety Act, describe any one act with one example	2
4	4	CO4	To represent the purchase Inventory using graphical representation and calculation using EOQ	2
5	5	CO5	Study of biography of successful entrepreneur indicating milestone achievement, summarize important trails.	2
6	6	CO5	Assess yourself as Entrepreneur to achieve success.	2
7	1	CO1	Select one product or service for business and describe how different than others.	2
8	2	CO2	Use internet or library to find out different sources of capital and budgets	2
9	6	CO5	Develop a project on a business opportunity incorporating as per standard format provided under guidelines of concern faculty. Components of project Report: One-page entire project Summary, introduction, project concept, promotors, process & technology, location and infrastructure, plant & machinery required, manpower, Raw Material, Market Survey, cost of project & sources of finance, project profitability, conclusion	4
10	5	CO5	Identify the market for your business, develop questionnaires to conduct primary data research, determine your course of action and determine competitor are, analyze each competitor in terms of price, facility, location, strength & weakness determine strategy to deal with each competitor.	4
11	4	CO4	Find our Break-even Analysis of your business, describe how many units you sell to break even & you think of way to lower the breakeven point.	4
12	5	CO5	Make a live conversation with an entrepreneur raise the issue of your interest pertaining to various aspects of entrepreneurship and make a report on it.	2
13	all	all	A Case study on entrepreneur/Businessman	4
14	all	all	Make Report on Industry visit for study of business / entrepreneurship	4
			Total	30

References/ Books:

Sr.	Title	Author, Publisher, Edition and	ISBN
No.		Year Of publication	
1	Industrial Engineering and	Dr. O. P. Khanna, Dhanpat Rai &	9788189928353,
	Management	Sons., New Delhi, 1980	9788189928353
2	Industrial Management	Rustom S. Davar, Vikas publication,	
		1999	9780706999051
3	Industrial Management	Jhamb & Bokil, Everest Publication	
		,Pune., 2013	978-8176602044

4	Organization& Management	R. D. Aggarwal, Tata Mc'graw hill	9780074515068
5	Entrepreneurship Development	Preferred By Colombo plan staff college of technical education, Tata Mc Graw Hill Publishing co. ltd. New Delhi, 1998	
6	A Manual on How to prepare Project Report	J.B. Patel, D.G. Allampolly, EDI study material, Ahmedabad, Gujarat	
7	A Manual on Business opportunity Identification &Selection	J.B. Patel, S.S. Modi, EDI study material, Ahmedabad, Gujarat	
8	A Hand book of New Entrepreneurs	J.B. Patel, S.S. Modi, EDI study material, Ahmedabad, Gujarat	
9	National Directory of Entrepreneur Motivator & Resource person	S.B. Sareen, H. Anil Kumar, EDI study material, Ahmedabad, Gujarat	
10	New Initiative in Entrepreneurship Education & Training	J.B. Patel, S.S. Modi, EDI study material, Ahmedabad, Gujarat	

E-References:

- 1. https://ndl.iitkgp.ac.in/
- 2. www.scribd.com
- 3. <u>www.slideshare.net.com</u>
- 4. https://nptel.ac.in

CO Vs PO and CO Vs PSO Mapping

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	1	1	-	-	1	-	2	1	1
CO2	2	2	-	3	2	1	3	2	3
CO3	2	1	-	-	3	1	1	3	2
CO4	2	1	2	1	2	3	3	2	3
CO5	2	1	1	-	3	2	2	2	3

ST

D

1960

Industry Consultation Committee:

Sr. No	Name	Designation	Institute/Organisation
1	Mr. P.P. Choudhary	Rtd Lecturer in Mechanical Engg. (Six-sigma Master Black belt.)	Govt. Polytechnic Mumbai
2	Mr. B.B. Kulkarni	Rtd Lecturer in Mechanical Engg.	Govt. Polytechnic Mumbai
3	Mr U. B. Shinde	Lecturer in Instrumentation Engg.	Govt. Polytechnic Mumbai
4	Ms. K.U. Waghmare	Lecturer in Instrumentation Engg.	Govt. Polytechnic Mumbai

Prog	Programme: Diploma in Instrumentation Engineering (Sandwich Pattern)									
Course Code: IS19309 Cou				rse Title: Pro	oject					
Compu	Compulsory / Optional: Compulsory									
Teach	ing Sch	ieme an	d Credits	Examination Scheme						
TH	TU	PR	Total	TH (2:30 Hrs)	TS1 (1 Hr)	TS2 (1 Hr)	PR	OR	TW	Total
		4	4					50*	50	100

Rationale:

Diploma holder need to be capable of doing self-Study throughout their life as the technology is developing with fast rate. Student will be able to find out various sources of technical information and develop self-study techniques to prepare a project and write a project report. This subject is intended to teach students to understand facts, concepts and Techniques of measurement, control, its repairs, fault finding and testing, estimation of cost and procurement of material, fabrication and manufacturing of various items used in instrumentation field. This will help the students to acquire skills and attitudes so as to discharge the function of supervisor in industry and can start his own small-scale enterprise.

Course Outcomes: Students will be able to:

Course o	futeomes. Students will be usie to.
CO1	Implement the skills acquired in the previous semesters to solve complex engineering problems
CO2	Survey towards developing a solution/product which helps in life time learning
CO3	Test the designed project model and evaluate its performance
CO4	Communicate effectively in oral or written format to present the working of their project/product

GENERAL GUIDELINES:

1. The Project groups complete project in all respect (fabrication, assembly, development of control logic, implementation, testing, and validation etc.) in fifth semester.

- 2. The group should maintain a logbook of activities. It should have entries related to the work done, problems faced, solution evolved etc., duly signed by respective guide in every week.
- 3. The guides should regularly monitor the progress of the project work.
- 4. The project work along with project report should be submitted as part of term work in third year fifth semester on or before the term end date.
- 5. Project report must be submitted in the prescribed format only. No variation in the format

will be accepted. "Format of Project Report" Major Contents: i. Introduction ii. Literature survey iii. Detailed Theory: 1) Planning and design 2) Development and Implementation work 3) Methodology

- 4) Applications
- 5) Advantages and Disadvantages.

iv. Future scope

v. Conclusion

vi References.

(No. of copies of seminar report to be prepared = S+2, where S is no. of students in group.)

6. The evaluation of project work at final oral examination should be done jointly by the internal and external examiners. The guide should be internal examiner for oral examination. The external examiner should be from the related area of the concerned project. He/She should have minimum of five years of experience at institute level or industry.

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
CO1	3			1	5	6	3	1	1
C O2		3	S	EST	D. 119	60/	3	2	1
CO3			3	3	Û.	1	3	3	3
CO4				KNO	MEDE	3	3	3	3

Sr. No	Name	Designation	Institute/Organization			
1	Mr. Sagar Tinkhede	Functional Manager	GS E&C Mumbai Pvt Ltd			
2	Mr. Tushar Shinde	Project Engineer	Emerson Automation solution Pvt. Ltd.			
3	Mr. S.G. Thube	Lecturer in Instrumentation Engg.	Govt. Polytechnic Mumbai			
4	Mr. U. B Shinde	Lecturer in Instrumentation Engg.	Govt. Polytechnic Mumbai			

Industry Consultation Committee:

Coordinator,

Curriculum Development,

Department of Instrumentation Engg.

Head of Department

Department of Instrumentation Engg.

I/C, Curriculum Development Cell

Programme : Diploma in Instrumentation Engineering										
Course Code:IS19408				Course Title: Scilab						
Compulsory / Optional: Compulsory										
Teachi	Teaching Scheme and Credits				E	xaminati	on Sche	eme		
TH	PR	TU	Total	TH (2:30 Hrs)	TS1 (1 Hr)	TS2 (1Hr)	PR	OR	TW	Total
	4#		4							

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination Note: For Minimum passing marks under various heads, refer, examination rule AR 26. Two practical skill test are to be conducted. First skill test at mid term and second skill test at the end of the term

COLUMN STOR

Course Content Details:

_	Topics / Sub-topics
1.	Introduction to Scilab and its benefits
	Outline: What is FOSS? Why FOSS ? About Scilab and its benefits Scilab is reliable Use of
	Scilab in CNES Use of Scilab for space mission analysis and flight dynamics Industrial
_	application
2.	Self learning of Scilab through Spoken Tutorials
	Outline: About Spoken Tutorial Created for self learning Dubbed in all 22 languages Scilab
	spoken tutorials 25 spoken tutorials on Scilab Side by side learning Spoken tutorial used as
3.	The amazing resource of Scilab Textbook Companion
	Outline: Opensource software problem, no good documentation for FLOSS Solution: Textbook
	companion project Scilab code for standard textbooks Demo of Textbook companion Download
	Scilab
4.	Scilab Lab migration, Toolboxes and Forums
	Outline: Lab migration Demo of Lab migration on FOSSEE Scilab website Download PDF for
	lab solution Scilab Toolboxes FOSSEE Optimisation toolbox available on atoms website IEEE
	paper
5.	Installing
	Outline: Installing Show where to download from and how to decide which version to choose
	(OS and 32/64bit) (www.scilab.org/download) Windows installation (Internet Connection i
6	Getting Started
υ.	Outline: Getting Started *Expressions: Show mathematical expressions with numbers *Variable
	*Diary command *Define symbolic constants. *Basic functions *suppressing output(;) *he
7	
/.	Vector Operations
	Outline: Vector Operations *Define vector *Calculate length of a vector. *Perform mathematica
	operations on Vectors such as addition, subtraction and multiplication. *Define a matrix
8.	Matrix Operations
	Outline: Matrix Operations *Access the elements of Matrix *Determine the determinant, invers
	and eigen values of a matrix. *Define special matrices. *Perform elementary row operation.
9.	Conditional Branching

Page.

Outline: Conditional Branching * 'if' and 'then' with the example * use of the 'else' keyword * use of the 'elseif' keyword * example for select

10. Iteration

Outline: Iteration Explain syntax of 'for' statement- tell that the variable iterates over a list/vector/matrix (or an expression that evaluates to any of these). Give example: ..

11. Scripts and Functions

Outline: Scripts and Functions *Introduction to the file formats in Scilab. *SCRIPT files. *sce versus .sci *Inline functions.

12. Plotting 2D graphs

Outline: Plotting 2D graphs About linspace: linspace is a linearly spaced vector. Plot a simple graph: x=linspace(12,34,10), y=linspace(-.1,2,10), plot(x,y) plot2d Using clf() clear..

13. Xcos Introduction

Outline: Xcos Introduction What is XCOS. What is palette. To collect the blocks from the palette and connect them to construct the block diagram. Set the parameters of different blocks..

14. File handling

Outline: File Handling- Scilab File handling Writing to a file using write() Reading from a file using read() Opening an existing file using mopen() Closing an already opened file usi.

15. User Defined Input and Output

Outline: User Defined Input and Output in Scilab Input Function. mprintf() save() and load() Used to quit scilab midway through calculation and continue at later stage.

16. Integration

Outline: *Develop Scilab code for different Composite *Numerical Integration algorithms *Divide the integral into equal intervals *Apply the algorithm to each interval *Calculate the com..

17. Solving Non linear Equations

Outline: Numerical methods- Solving Non- linear Equations Learn how to solve nonlinear equations using numerical methods Learn Bisection method Learn Secant method Learn h...

18. Linear equations Gaussian Methods

Outline: * Explain Gauss Elimination method algorithm * Explain code for Gauss Elimination method and solve an example using this code * Explain Gauss Jordan method algorithm ..

19. Linear equations Iterative Methods

Outline: 1. Solve system of linear equations using iterative methods 2. Use Jacobi and Gauss Seidel iterative methods 3. Learn how to iterate until we converge at the solution 4. Learn h...

20. Interpolation

Outline: Numerical Interpolation Develop Scilab code for different Numerical Interpolation algorithms Calculate new value of function from given data points

21. ODE Euler methods

Outline: Solving ODEs using Euler Methods 1. Solve ODEs using Euler and Modified Euler methods 2. Develop Scilab code to solve ODEs

22. ODE Applications

Outline: Solving ODEs using Scilab ode Function Use Scilab ode function Solve typical examples of ODEs Plot the solution

- 23. Optimization Using Karmarkar Function Outline: * About Optimization * Use of Scilab function Karmarkar in Optimization
- Digital Signal Processing Outline: Plotting continuous and discrete sine waves. Plotting step function. Plotting ramp function.

25. Control systems

Outline: 1. Define a continuous time system: second and higher order 2. Response plot for step input 3. Response plot for sine input 4. Bode plot 5. Study numer and denom Scilab function.

- 26. Discrete systemsOutline: * Define discrete time system variable z * Define first order discrete time system *Explain ones, flts, dscr, ss2tf functions
- 27. Calling User Defined Functions in XCOS Outline: * Write a squaring function * Use of scifunc block in XCOS * Use of MUX block * Call functions having multiple inputs and outputs
- 28. Simulating a PID controller using XCOS Outline: Simulating a PID controller using Xcos: 1. Modifying firstorder.xcos file to implement a PID controller 2. Closing the loop 3. Setting PID gains and observing its response
- 29. Developing Scilab Toolbox for calling external C libraries Outline: Compiling an external C library Generating shared library Copying the shared library to Scilab Toolbox Interfacing the shared library with Scilab Understanding the important co..
- 30. Developing Scilab Toolbox for calling Python and its functions Outline: About Scithon toolbox About header folder Interfacing between Scilab and Python Files used for starting the python instance and overloaded virtual functions Links to understand.

I/C, Curriculum Development Cell

Principal

