DEPARTMENT OF ELECTRONICS ENGINEERING

ELECTRONICS ENGINEERING PROGRAMME (SANDWICH PATTERN) CURRICULUM DOCUMENT (REVISION 2019) (Fourth Semester)

GOVERNMENT POLYTECHNIC MUMBAI

(An Autonomous Institute, Government of Maharashtra)

GOVERNMENT POLYTECHNIC MUMBAI

(Academically Autonoums Institute, Government of Maharashtra)

Teaching and Examination Scheme(P19)

With effect from AY 2019-20

Programme: Diploma in Electronics Engineering (Sandwich Pattern)

Term / Semester - IV

Course			Teaching Hours/Contact Hours				Examination Scheme (Marks)						
Course Code	Course Title					Credits	Theory						
Coue		L	Р	TU	Total		TH	TS1	TS2	PR	OR	TW	Total
EC19403	Control Systems	4	2	0	6	6	60	20	20	0	50	50	200
EC19303	Power Electronics	4	4	0	8	8	60	20	20	50*	0	25	175
MG19501	EDP And Management	3	0	0	3	3	60@	20@	20@	0	0	0	100
SC19112	Applied Mathematics	1	0	2	3	3	0	0	0	0	0	50	50
EC19404	Computer Network	3	2	0	5	5	0	0	0	0	50	50	100
EC19405	Elective1 Fiber optic Communication	4	2	0			(0)	20	20	50*	0	25	175
EC19406	Elective 1 Mobile Communication	4	STR	0	6	6	60	20	20	30*	0	25	175
EC19407	PYTHON 3.4.3 (MOOC)	0	4	0	4	4	0	0	0	0	0	0	0
	Total	19	14	2	35	35	240	80	80	100	100	200	800
	Total Contact Hours												

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment) * Indicates assessment by External Examiner else internal practical skill test ,# indicates Self, on- line learning Mode, @ indicates on line examination Note: Duration of Examination--TS1&TS2 -1 hour , TH- 2 hours, PR/OR – 3 hours per batch , SCA- Library - 1 hour, Sports- 2 hours, Creative Activity-2 hours Self, on- line learning Mode through MOOCs /Spoken Tutorials / NPTEL / SWAYAM / FOSSEE etc.

Department Co-Ordinator Curriculum Development, Department of Electronic Head of Department Department of Electronics, In-Charge Curriculum Development Cell Principal

Program	Programme : Diploma in Electronics Engineering (Sandwich Pattern)									
Course Code: EC19403			Course Title	e: Contro	l System					
Compul	Compulsory / Optional: Compulsory									
Teachi	ng Sche	eme and	l Credits			Examina	tion Sch	eme		
L	Р	TU	Total	TH (2Hrs 30mins)	TS1 (1Hr)	TS2 (1Hr)	PR	OR	TW	Total
4	2	-	6	60	20	20	-	50	50	200

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment) * Indicates assessment by External Examiner else internal practical skill test # indicates Self, on- line learning Mode, @ indicates on line examination.

Note: For Minimum passing marks under various heads, refer, examination rule AR 26. Two practical skill tests are to be conducted. First skill test at midterm and second skill test at the end of the term

Rationale:

A control system consists of several elements or components connected and operated in such a way as to achieve a desired control in a specific domain of operation of the system. To increase the effectiveness, efficiency and quality of products, now a days it is very much essential to complete the required work or task automatically in every field. Control systems are also used in space technology and defense applications such as nuclear power weapons, guided missiles etc. As the control system is the basis of various automatic control systems, therefore the students of electronic engineering must have the knowledge of control system.

Course Outcomes: Student should be able to

CO1	Identify various types of control systems.
CO2	Understand time and frequency domain specifications
CO3	Determine stability conditions of control system.
CO4	Select appropriate Control system component and control action as necessary.

Course Content Details:

Unit No	Topics / Sub-topics
1	Overview of Control system 1.1 System- definition and practical examples, Control system – definition and examples. 1.2 Classification of control system.

		1.3 Open loop and closed loop systems – definition, block diagram, practical example									
		and Comparison.									
		1.4 Transfer function – definition, derivation of transfer function for close loop									
		control system. Transfer function of simple RC and RLC circuits.									
		1.5 S-plane representation:									
		 1.6 Poles and zeros: Definition and simple numerical 1.7 Order of a system – definition, 0th, 1st, 2nd order system standard equation, 									
		practical examples.									
		1.8 Linear time varying and time in varying systems –definition and example.									
		 Block diagram representation of a system-Reduction rules, problems (only SISO). 									
		1.5 Dioek diagram representation of a system reduction rates, problems (only 5150).									
		Course Outcome: CO1Teaching Hours:12 hrsMarks: 10 (R-04, U-04, A-02)									
F		Time Domain Analysis									
		2.1 Standard test inputs: Step, ramp, parabolic and impulse, significance, and									
		corresponding Laplace representation.									
		2.2 Time domain analysis: Transient and steady state response.									
		2.2 Time domain analysis. Transient and steady state response.2.3 First order control system: Analysis for unit step input, Concept of time constant.									
		2.4 Second order control system: Analysis for unit step input, Concept, definition and									
2		effect of damping.									
2		2.5 Time response specifications (no derivations) Tp, Ts, Tr, Td, Mp. Simple numerical									
		on time response specifications.									
		2.6 Steady state analysis: Type 0, 1, 2 systems,									
		2.6.1 Error constants									
		2.6.2 Steady state error									
		2.6.3 Simple numerical									
		Course Outcome:CO2 Teaching Hours:12 hrs Marks: 14 (R-04, U-04, A-06)									
		Frequency domain Analysis									
		3.1 Introduction, advantages and disadvantages of frequency response analysis and									
		frequency domain									
2		3.2 Frequency response specifications.									
3		3.3 Correlation between time and frequency domain specifications.									
		3.4 Realization of Lead, Lag, Lead-Lag Compensator.									
		Course Outcome: CO2 Teaching Hours: 06 hrs Marks: 08 (R-02, U-06, A-0)									
		Stability									
		4.1 S-plane – Introduction.									
		4.2 Definition of stability									
	4	4.3 Necessary Conditions for stability.									
		4.4 Types of stability:- stable, unstable, critically stable and conditionally stable									
		system, relative stability.									
√		4.5 Routh's stability criterion- different cases and conditions and simple numerical									
ag ag		4.6 Bode plot - introduction, Definition of Phase Margin and Gain Margin.									
đ		4.7 Introduction of Root Locus. (No Numerical)									

Г

	Course Outcome: CO3 Teaching Hours:12 hrs Marks: 10 (R- 02, U-04, A-04)									
	Servo Systems									
5	5.1 Servo system – definition, block diagram.									
	5.2 Servo components:									
	5.2.1 Potentiometer as error detector.									
	5.2.2 Synchro as Transmitter and Error detector.									
	5.2.3 Rotary encoder.									
	5.3 Armature controlled DC servo motor.									
	5.4 Field controlled DC servo motor.									
	Course Outcome: CO4Teaching Hours: 8 hrsMarks:08 (R-02, U-04, A-02)Control Actions:6.1.6.1.Process control system: Block diagram and explanation of each block.6.2.Control actions									
	6.2.1 Discontinuous modes: ON OFF controllers: equation, neutral zone									
	6.2.2 Continuous modes: PROPORTIONAL controllers (offset, Proportional									
	Band), INTEGRAL and DERIVATIVE controllers; o/p equations, corresponding Laplace									
6	Transforms, Response of P, I and D controllers.									
	6.3 Composite controllers: PI, PD, PID controllers- Block diagram, O/P Equations,									
	Response, Comparison.									
	6.4 Electronic P, I, D, PI, PD, PID controller: only circuit diagram using OPAMP									
	Course Outcome: CO4 Teaching Hours: 10 hrs Marks:10 (R-02, U-04, A-04)									

Suggested Specifications Table (Theory):

Unit		Distribution of Theory Marks					
No	Topic Title	R Level	U Level	A Level	Total Marks		
1	Overview of Control system	04	04	02	10		
2	Time Domain Analysis	04	04	06	14		
3	Frequency domain Analysis	02	06		08		
4	Stability	02	04	04	10		
5	Servo Systems	02	04	02	08		
6	Control Actions	02	04	04	10		
	Total	16	26	18	60		

Sr. Unit **Title of the Experiments** Hours Cos No. No Demonstrate the performance of open loop control system 1 1 CO1 2 using electronic amplifiers- Op Amps. Demonstrate the performance of closed loop control 2 1 CO1 2 system using electronic amplifiers- Op Amps. Plot unit step response of given first-order system and find 3 CO2 2 2 out its time constant. 3, 6 CO3. A case study on – Determine Stability of given control 2 4 CO4 system using Rouths Criteria / Case study on: Demonstration of PID controller for temperature/level control using any software / any topic suggested by faculty. (Actual work on case study etc.) A case study on – Determine Stability of given control 3, 6 CO3, 2 5 CO4 system using Rouths Criteria / Case study on: Demonstration of PID controller for temperature/level control using any software / any topic suggested by faculty. (Case study report writing etc) Measurement of error using Potentiometer error detector. 5 CO4 2 6 Determine the transfer function for given closed loop system 7 CO1 1 2 in block diagram representation. 8 CO₂ 2 2 Plot unit step response of given second-order system. Determine the steady-state errors for Type-0,1 and 2 systems 9 CO2 2 2 for different standard inputs. Plot the Phase margin and Gain Margin of a given system 10 CO2 3 2 Using Bode Plot. Demonstration of Synchro transmitter receiver system. 11 5 CO4 2 CO4 12 Demonstration of temperature/level control with ON-OFF 2 6 controller. 13 6 CO4 Demonstration of temperature/level control with PI controller. 2 14 2 CO₂ 2 Mini Project: Simulate and test the performance of 1st order RC and 2nd order RLC circuit using any simulation software / any topic suggested by faculty. (execute actual project with the help of software etc) Mini Project: Simulate and test the performance of 1st order 15 2 CO2 2 RC and 2^{nd} order RLC circuit using any simulation software / any topic suggested by faculty. (mini project report preparation etc) Total 30

List of experiments: Total 10 experiments (or turns) out of 15 experiments (or turns)

Note: Experiments No. 1 to 6, 14 and 15 are compulsory and should map all units and Cos. Remaining experiments are to be performed as per importance of the topic.

References/ Books:

Sr. No.	Title	Author, Publisher, Edition and Year Of publication	ISBN
1	Control system Engg.	J.J.Nagrath & M. Gopal,Tata McGraw-Hill	9781848290037
2	Process Control Instrumentation Technology	C.D. Johnson, PHI	9789332549456
3	Modern control Engg.	K. Ogata ,PHI	978812034010
4	Control systems	A. Kumar, Tata McGraw-Hill	9788120331976
5	Principles of Control systems	Goyal and Bakshi, Technical Publication	9788189411596

E-Reference

 $1.www.nptlvideos.com/control_sysrtems$

2.www.in.mathworks.com/solutions/control_system.html?s_tid=srchtitle

3. All :

 $\label{eq:https://www.youtube.com/watch?v=o_Bp7j77Uqc&list=PLWPirh4EWFpGpH_Rb6Q4iQ6vGGRA6MORZ&index=2$

4. All: https://www.youtube.com/playlist?list=PLgwJf8NK-2e43et6qbo4IqYSJCv-6kN90

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	2	2	2			2	1	2	
CO2	2	2	2	1		2	3	2	3	2
CO3	3	3	3	2	1	2	3	3	2	3
CO4	2	3	3	2	1	3	3	3	1	3

CO Vs PO and CO Vs PSO Mapping

Industry Consultation Committee:

Sr. No	Name	Designation	Institute/Organisation
1	Mr. Gavand Uttam	Dy. Manager	JSW Dolvi, Pen, Raigad
2	Ms. J.J.Mane	Lecturer in Electronics	Govt. Polytechnic Pen
3	Ms. A.N.Sayyed	Lecturer in Electronics	P. L. Govt. Polytechnic, Latur
4	Ms. T.K.Balsaraf	Lecturer in Electronics	Govt. Polytechnic Mumbai

Coordinator, Curriculum Development, Department of Electronics Engineering Head of Department Department of Electronics Engineering

I/C, Curriculum Development Cell

Principal

Program	Programme : Diploma in Electronics Engineering (Sandwich Pattern)									
Course Code: EC19303				Course T	itle: Po	wer Elec	tronics			
Compul	Compulsory / Optional: Compulsory									
Teachi	ng Sche	eme and	l Credits			Exa	mination	Scheme		
L	Р	TU	Total	TH (2 Hrs 30 min)	TS1 (1Hr)	TS2 (1Hr)	PR	OR	TW	Total
4	4	-	8	60	20	20	50*	-	25	175

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination

Note: For Minimum passing marks under various heads, refer, examination rule AR 26. Two practical skill tests are to be conducted. First skill test at midterm and second skill test at the end of the term

Rationale:

It is necessary for the students to study and apply the basic principles, analyse and troubleshoot simple circuits like controlled rectifier, light dimmer, battery charger etc. To acquire this level of understanding, the basic knowledge of power semiconductor devices and circuit is essential. This Course is one of the core subject which is deals with construction, working principle, application of power semiconductor devices as well as it deals with some sophisticated power electronics systems and complex circuits such as choppers, inverters etc.

D. 1960

Course Outcomes: Student should be able to

CO1	Identify power electronics devices in circuits.
CO2	Maintain turn ON and turn OFF circuit and protection circuit of SCR
CO3	Understand the concept of single phase and three phase controlled rectifier.
CO4	Use choppers and inverters in different application
CO5	Identify and select appropriate thyristor and related devices for various Industrial
	Electronics applications.

Course Content Details:

Unit No	Topics / Sub-topics									
	Power Semiconductor devices:									
	1.1 SCR introduction									
	1.1.1 Construction, symbol, working principle and V-I characteristics.									
1	1.1.2 Transistorized equivalent circuit of SCR.									
	1.1.3 Specifications of SCR.									
	1.1.4 Definitions: Holding current, latching current, firing angles, conduction angle and									
	break over voltage.									

 1.1.5 Applications of SCR 1.2 Thyristor Family Devices: Construction, symbol, working principle, V-I characteristic and application 1.2.1 TRIAC 1.2.2 Power MOSFET 1.2.3 IGBT 1.3 Triggering Devices: Construction, symbol, working principle, V-I characteristics and application. 1.3.1 DIAC 1.3.2 UJT Course Outcome: CO1 Teaching Hours : 10 hrs Marks: 10 (R-4, U-4, A-2 SCR Turn ON, Protection circuits and SCR Turn OFF methods 2.1 SCR turn on methods. 2.2 Gate trigger circuits: Circuit diagram, working principle, waveforms. 2.2.1 Resistance triggering circuit 2.3 UJT triggering using pulse transformer 2.3 Series and parallel connection of SCRs 2.3.1 Need for equalizing network 2.3.2 AC and DC equalizing circuits 2.3.3 UJT triggering using pulse transformer 2.4 Protection circuits: Circuit diagram, working principle. 2 4.1 over voltage 2.4.2 over current 2.4.3 dv/dt protection 2.4.4 d/dt protection 2.5 Natural commutation: circuit diagram & working principle. 2.6.1 Type A 2.6.2 Type B 2.6.3 Type C 2.6.4 Type D 2.6.5 Type E Course Outcome: CO2 Teaching Hours : 14 hrs Marks: 14 (R-6, U-6, A-2) Controlled Rectifier 3.1 Single-phase half wave controlled rectifiers with resistive load, inductive load (with a without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2.5 Single-phase half wave controlled rectifiers with resistive load, inductive load (with a without freewheeling diode): Circuit diagram, working principle, waveforms. 3.3.1 Effect of freewheeling diodes 3.3 Three-phase half wave controlled rectifiers with resistive load and inductive load (with and without freewheeling diode): Circuit diagram, working principle, waveforms. 		1
and application 1.2.1 TRIAC 1.2.2 Power MOSFET 1.2.3 IGBT 1.3 Triggering Devices: Construction, symbol, working principle, V-I characteristics and application. 1.3.1 DIAC 1.3.2 UJT Course Outcome: CO1 Teaching Hours : 10 hrs Marks: 10 (R-4, U-4, A-2 SCR Turn ON, Protection circuits and SCR Turn OFF methods 2.1 SCR turn on methods. 2.2 Gate trigger circuits: Circuit diagram, working principle, waveforms. 2.3 UJT triggering using pulse transformer 2.3 Series and parallel connection of SCRs 2.3.1 Need for equalizing incruit 2.3 Gree equalizing incruit 2.3 Definition of String efficiency, Derating. 2.4 Protection circuits: Circuit diagram, working principle. 2.4.1 over voltage 2.4.2 over current 2.4.3 dv/dt protection 2.5 Natural commutation: circuit diagram & working principle 2.6 Forced commutation: circuit diagram & working principle. 2.6.1 Type A 2.6.2 Type B 2.6.3 Type C 2.6.4 Type D 2.6.5 Type E Course Outcome: CO2 Teaching Hours : 14 hrs Marks: 14 (R-6, U-6, A-2 Controlled Rectiffer 3.1 Single-phase half wave controlled rectifiers with resistive load, inductive load (with an without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2.1 Effect of freewheeling diodes		1.1.5 Applications of SCR
 1.2.1 TRIAC 1.2.2 Power MOSFET 1.3 Triggering Devices: Construction, symbol, working principle, V-I characteristics and application. 1.3.1 DIAC 1.3.2 UJT Course Outcome: CO1 Teaching Hours : 10 hrs Marks: 10 (R-4, U-4, A-2 SCR Turn ON, Protection circuits and SCR Turn OFF methods 2.1 SCR turn on methods. 2.2 Gate trigger circuits: Circuit diagram, working principle, waveforms. 2.2.1 Resistance triggering circuit 2.2.3 UT triggering using pulse transformer 2.3 Series and parallel connection of SCRs 2.3.1 Need for equalizing network 2.3.2 AC and DC equalizing circuit 2.3.3 Definition of String efficiency, Derating. 2.4 Protection circuits: Circuit diagram, working principle. 2.4.1 over voltage 2.4.2 over current 2.4.3 dv/dt protection 2.4.4 di/dt protection 2.5 Natural commutation: circuit diagram & working principle. 2.6.1 Type B 2.6.3 Type C 2.6.4 Type D 2.6.5 Type E Course Outcome: CO2 Teaching Hours : 14 hrs Marks: 14 (R-6, U-6, A-2 Controlled Rectifier 3.1 Single-phase half wave controlled rectifiers with resistive load, inductive load (with an without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2.1 Effect of freewheeling diodes 		1.2 Thyristor Family Devices: Construction, symbol, working principle, V-I characteristics
 1.2.2 Power MOSFET 1.2.3 IGBT 1.3 Triggering Devices: Construction, symbol, working principle, V-I characteristics and application. 1.3.1 DIAC 1.3.2 UJT Course Outcome: CO1 Teaching Hours : 10 hrs Marks: 10 (R-4, U-4, A-2 SCR Turn ON, Protection circuits and SCR Turn OFF methods 2.1 SCR turn on methods. 2.2 Gate trigger circuits: Circuit diagram, working principle, waveforms. 2.2.1 Resistance triggering circuit 2.2.3 UJT triggering using pulse transformer 2.3 Series and parallel connection of SCRs 2.3.1 Need for equalizing network 2.3.2 AC and DC equalizing circuit 2.4 Protection circuits. Circuit diagram, working principle. 2 4.1 over voltage 2.4.2 over current 2.4.3 dv/dt protection 2.4.4 di/dt protection 2.5 Natural commutation: circuit diagram & working principle 2.6 Forced commutation: circuit diagram & working principle 2.6.1 Type A 2.6.2 Type B 2.6.3 Type C 2.6.4 Type D 2.6.5 Type E Course Outcome: CO2 Teaching Hours : 14 hrs Marks: 14 (R-6, U-6, A-2 Controlled Rectifier 3.1 Single-phase full wave controlled rectifiers with resistive load, inductive load (with a without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2 Single-phase full wave (bridge configurations) controlled rectifiers with resistive load and inductive load (with an without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2.1 Effect of freewheeling diodes 		and application
 1.2.2 Power MOSFET 1.2.3 IGBT 1.3 Triggering Devices: Construction, symbol, working principle, V-I characteristics and application. 1.3.1 DIAC 1.3.2 UJT Course Outcome: CO1 Teaching Hours : 10 hrs Marks: 10 (R-4, U-4, A-2 SCR Turn ON, Protection circuits and SCR Turn OFF methods 2.1 SCR turn on methods. 2.2 Gate trigger circuits: Circuit diagram, working principle, waveforms. 2.2.1 Resistance triggering circuit 2.2.3 UJT triggering using pulse transformer 2.3 Series and parallel connection of SCRs 2.3.1 Need for equalizing network 2.3.2 AC and DC equalizing circuit 2.4 Protection circuits. Circuit diagram, working principle. 2 4.1 over voltage 2.4.2 over current 2.4.3 dv/dt protection 2.4.4 di/dt protection 2.5 Natural commutation: circuit diagram & working principle 2.6 Forced commutation: circuit diagram & working principle 2.6.1 Type A 2.6.2 Type B 2.6.3 Type C 2.6.4 Type D 2.6.5 Type E Course Outcome: CO2 Teaching Hours : 14 hrs Marks: 14 (R-6, U-6, A-2 Controlled Rectifier 3.1 Single-phase full wave controlled rectifiers with resistive load, inductive load (with a without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2 Single-phase full wave (bridge configurations) controlled rectifiers with resistive load and inductive load (with an without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2.1 Effect of freewheeling diodes 		1.2.1 TRIAC
 1.2.3 IGBT 1.3 Triggering Devices: Construction, symbol, working principle, V-I characteristics and application. 1.3.1 DIAC 1.3.2 UJT Course Outcome: CO1 Teaching Hours: 10 hrs Marks: 10 (R-4, U-4, A-2 SCR Turn ON, Protection circuits and SCR Turn OFF methods 2.1 SCR turn on methods. 2.2 Gate trigger circuits: Circuit diagram, working principle, waveforms. 2.2.1 Resistance triggering circuit 2.2.3 UJT triggering using pulse transformer 2.3 Series and parallel connection of SCRs 2.3.1 Need for equalizing network 2.3.2 AC and DC equalizing circuits 2.3.3 Definition of String efficiency, Derating. 2.4 Protection circuits: Circuit diagram, working principle. 2.4.1 over voltage 2.4.2 over current 2.4.3 dv/dt protection 2.4.4 di/dt protection 2.6.4 Type B 2.6.3 Type C 2.6.4 Type D 2.6.5 Type E Course Outcome: CO2 Teaching Hours : 14 hrs Marks: 14 (R-6, U-6, A-2 Controlled Rectifier 3.1 Single-phase half wave controlled rectifiers with resistive load, inductive load (with a without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2 Single-phase full wave (bridge configurations) controlled rectifiers with resistive load and inductive load (with and without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2.1 Effect of freewheeling diodes 		1.2.2 Power MOSFET
 1.3 Triggering Devices: Construction, symbol, working principle, V-I characteristics and application. 1.3.1 DIAC 1.3.2 UJT Course Outcome: CO1 Teaching Hours : 10 hrs Marks: 10 (R-4, U-4, A-2 SCR Turn ON, Protection circuits and SCR Turn OFF methods 2.1 SCR turn on methods. 2.2 Gate trigger circuits: Circuit diagram, working principle, waveforms. 2.2.1 Resistance triggering circuit 2.2.3 UJT triggering using pulse transformer 2.3 Series and parallel connection of SCRs 2.3.1 Need for equalizing network 2.3.2 AC and DC equalizing circuits 2.4 Protection circuits: Circuit diagram, working principle. 2.4 Protection circuits: Circuit diagram, working principle. 2.4 over voltage 2.4.2 over current 2.4.3 dv/dt protection 2.4.4 di/dt protection 2.5 Natural commutation: circuit diagram & working principle 2.6 Forced commutation: circuit diagram & working principle 2.6 Type B 2.6.3 Type C 2.6.4 Type D 2.6.5 Type E Course Outcome: CO2 Teaching Hours : 14 hrs Marks: 14 (R-6, U-6, A-2 Controlled Rectifier 3.1 Single-phase half wave controlled rectifiers with resistive load, inductive load (with a without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2 Single-phase full wave (bridge configurations) controlled rectifiers with resistive load and inductive load (with and without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2.1 Effect of freewheeling diodes 		
 application. 1.3.1 DIAC 1.3.2 UJT Course Outcome: CO1 Teaching Hours: 10 hrs Marks: 10 (R- 4, U-4, A-2 SCR Turn ON, Protection circuits and SCR Turn OFF methods 2.1 SCR turn on methods. 2.2 Gate trigger circuits: Circuit diagram, working principle, waveforms. 2.2.1 Resistance triggering circuit 2.2.3 UJT triggering using pulse transformer 2.3 Series and parallel connection of SCRs 2.3.1 Need for equalizing network 2.3.2 AC and DC equalizing circuits 2.3.3 Definition of String efficiency, Derating. 2.4 Protection circuits: Circuit diagram, working principle. 2.4.1 over voltage 2.4.2 over current 2.4.3 dv/dt protection 2.5 Natural commutation: circuit diagram & working principle 2.6 Forced commutation: circuit diagram & working principle 2.6 Forced commutation: circuit diagram & working principle 2.6.1 Type A 2.6.2 Type B 2.6.3 Type C 2.6.4 Type D 2.6.5 Type E Course Outcome: CO2 Teaching Hours : 14 hrs Marks: 14 (R-6, U-6, A-7 Controlled Rectifier 3.1 Single-phase half wave controlled rectifiers with resistive load, inductive load (with a without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2 Single-phase full wave (bridge configurations) controlled rectifiers with resistive load and inductive load (with and without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2.1 Effect of freewheeling diodes 		
 1.3.1 DIAC 1.3.2 UJT Course Outcome: CO1 Teaching Hours : 10 hrs Marks: 10 (R- 4, U-4, A-2 SCR Turn ON, Protection circuits and SCR Turn OFF methods 2.1 SCR turn on methods. 2.2 Gate trigger circuits: Circuit diagram, working principle, waveforms. 2.1 Resistance triggering circuit 2.2 R-C triggering circuit 2.3 UJT triggering using pulse transformer 2.3 Series and parallel connection of SCRs 2.3.1 Need for equalizing network 2.3.2 AC and DC equalizing circuits 2.3.3 Definition of String efficiency, Derating. 2.4 Protection circuits: Circuit diagram, working principle. 2.4.1 over voltage 2.4.2 over current 2.3.3 dv/dt protection 2.4.4 di/dt protection 2.5 Natural commutation: circuit diagram & working principle 2.6 Forced commutation: circuit diagram & working principle 2.6 Forced commutation: circuit diagram & working principle 2.6.1 Type A 2.6.2 Type B 2.6.3 Type C 2.6.4 Type D 2.6.5 Type E Course Outcome: CO2 Teaching Hours : 14 hrs Marks: 14 (R-6, U-6, A-2 Controlled Rectifier 3.1 Single-phase half wave controlled rectifiers with resistive load, inductive load (with an without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2 Single-phase full wave (bridge configurations) controlled rectifiers with resistive load and inductive load (with and without freewheeling diode): Circuit diagram, working principle, waveforms. 3.1 Single-phase full wave (bridge configurations) controlled rectifiers with resistive load and inductive load (with and without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2.1 Effect of freewheeling diodes 		
1.3.2 UJT Course Outcome: CO1 Teaching Hours : 10 hrs Marks: 10 (R- 4, U-4, A-2 SCR Turn ON, Protection circuits and SCR Turn OFF methods 2.1 SCR turn on methods. 2.2 Gate trigger circuits: Circuit diagram, working principle, waveforms. 2.2.1 Resistance triggering circuit 2.2.2 R-C triggering circuit 2.2.2 R-C triggering using pulse transformer 2.3 Series and parallel connection of SCRs 2.3.1 Need for equalizing network 2.3.2 AC and DC equalizing circuits 2.3.2 AC and DC equalizing circuits 2.3.4 Protection circuits: Circuit diagram, working principle. 2.4.1 over voltage 2.4.1 over voltage 2.4.2 over current 2.4.3 dv/dt protection 2.4.3 dv/dt protection 2.6 Forced commutation: circuit diagram & working principle 2.6.1 Type A 2.6.2 Type B 2.6.3 Type C 2.6.4 Type D 2.6.5 Type E Course Outcome: CO2 Teaching Hours : 14 hrs Marks: 14 (R-6, U-6, A-2) Controlled Rectifier 3.1 Single-phase half wave controlled rectifiers with resistive load, inductive load (with an without freewheeling diode): Circuit diagram, working principle, waveforms. 3 3.2 Single-phase full wave (bridge configurations) controlled rectifiers with resistive load and inductive load (with and without freewheeling diode): Circuit diagram, working principle, waveforms. 3 <th></th> <th>**</th>		**
Course Outcome: CO1 Teaching Hours : 10 hrs Marks: 10 (R- 4, U-4, A-2 SCR Turn ON, Protection circuits and SCR Turn OFF methods 2.1 SCR turn on methods. 2.2 Gate trigger circuits: Circuit diagram, working principle, waveforms. 2.2.1 Resistance triggering circuit 2.2.3 UJT triggering using pulse transformer 2.3 Series and parallel connection of SCRs 2.3.1 Need for equalizing network 2.3.2 AC and DC equalizing circuits 2.3.3 Definition of String efficiency, Derating. 2.4 Protection circuits: Circuit diagram, working principle. 2.4.1 over voltage 2.4.2 over current 2.4.3 dv/dt protection 2.4.4 di/dt protection 2.4.4 di/dt protection 2.6.5 Type B 2.6.5 Type B 2.6.3 Type C 2.6.4 Type D 2.6.5 Type E Course Outcome: CO2 Teaching Hours : 14 hrs Marks: 14 (R-6, U-6, A-2 Controlled Rectifier 3.1 Single-phase half wave controlled rectifiers with resistive load, inductive load (with a without freewheeling diode): Circuit diagram, working principle, waveforms. 3 3.2 Single-phase full wave (bridge configurations) controlled rectifiers with resistive load and inductive load (with and without freewheeling diode): Circuit diagram, working principle, waveforms. 3 3.2 Effect of freewheeling diodes <th></th> <th></th>		
SCR Turn ON, Protection circuits and SCR Turn OFF methods 2.1 SCR turn on methods. 2.2 Gate trigger circuits: Circuit diagram, working principle, waveforms. 2.1 Resistance triggering circuit 2.2.2 R-C triggering circuit 2.3 UJT triggering using pulse transformer 2.3 Series and parallel connection of SCRs 2.3.1 Need for equalizing network 2.3.2 AC and DC equalizing circuits 2.3.3 Definition of String efficiency, Derating. 2.4 Protection circuits: Circuit diagram, working principle. 2.4.1 over voltage 2.4.2 over current 2.4.3 dv/dt protection 2.4.4 di/dt protection 2.5 Natural commutation: circuit diagram & working principle 2.6 Forced commutation: circuit diagram & working principle 2.6.1 Type A 2.6.2 Type B 2.6.3 Type C 2.6.4 Type D 2.6.5 Type E Course Outcome: CO2 Teaching Hours : 14 hrs Marks: 14 (R-6, U-6, A-2 Controlled Rectifier 3.1 Single-phase half wave controlled rectifiers with resistive load, inductive load (with a without freewheeling diode): Circuit diagram, working principle, waveforms. 3 3.2 Single-phase full wave (bridge configurations) controlled rectifiers with resistive load and inductive load (with and without fre		1.3.2 UJT
SCR Turn ON, Protection circuits and SCR Turn OFF methods 2.1 SCR turn on methods. 2.2 Gate trigger circuits: Circuit diagram, working principle, waveforms. 2.1 Resistance triggering circuit 2.2.2 R-C triggering circuit 2.3 UJT triggering using pulse transformer 2.3 Series and parallel connection of SCRs 2.3.1 Need for equalizing network 2.3.2 AC and DC equalizing circuits 2.3.3 Definition of String efficiency, Derating. 2.4 Protection circuits: Circuit diagram, working principle. 2.4.1 over voltage 2.4.2 over current 2.4.3 dv/dt protection 2.4.4 di/dt protection 2.5 Natural commutation: circuit diagram & working principle 2.6 Forced commutation: circuit diagram & working principle 2.6.1 Type A 2.6.2 Type B 2.6.3 Type C 2.6.4 Type D 2.6.5 Type E Course Outcome: CO2 Teaching Hours : 14 hrs Marks: 14 (R-6, U-6, A-2 Controlled Rectifier 3.1 Single-phase half wave controlled rectifiers with resistive load, inductive load (with a without freewheeling diode): Circuit diagram, working principle, waveforms. 3 3.2 Single-phase full wave (bridge configurations) controlled rectifiers with resistive load and inductive load (with and without fre		Course Outcome: CO1 Teaching Hours · 10 hrs Marks: 10 (R-4 U-4 A-2)
 2.1 SCR turn on methods. 2.2 Gate trigger circuits: Circuit diagram, working principle, waveforms. 2.2.1 Resistance triggering circuit 2.2.2 R-C triggering circuit 2.3 UJT triggering using pulse transformer 2.3 Series and parallel connection of SCRs 2.3.1 Need for equalizing network 2.3.2 AC and DC equalizing circuits 2.3.3 Definition of String efficiency, Derating. 2.4 Protection circuits: Circuit diagram, working principle. 2.4 Protection circuits: Circuit diagram, working principle. 2.4.1 over voltage 2.4.2 over current 2.4.3 dv/dt protection 2.4 Natural commutation: circuit diagram & working principle 2.6 Forced commutation: circuit diagram & working principle 2.6 Forced commutation: circuit diagram & working principle 2.6 Forced commutation: circuit diagram & working principle 2.6.1 Type A 2.6.2 Type B 2.6.3 Type C 2.6.4 Type D 2.6.5 Type E Course Outcome: CO2 Teaching Hours : 14 hrs Marks: 14 (R-6, U-6, A-2 Controlled Rectifier 3.1 Single-phase half wave controlled rectifiers with resistive load, inductive load (with a without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2 Single-phase full wave (bridge configurations) controlled rectifiers with resistive load and inductive load (with and without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2.1 Effect of freewheeling diodes 		0
 2.2 Gate trigger circuits: Circuit diagram, working principle, waveforms. 2.2.1 Resistance triggering circuit 2.2.2 R-C triggering circuit 2.3 UJT triggering using pulse transformer 2.3 Series and parallel connection of SCRs 2.3.1 Need for equalizing network 2.3.2 AC and DC equalizing circuits 2.3.3 Definition of String efficiency, Derating. 2.4 Protection circuits: Circuit diagram, working principle. 2.4.1 over voltage 2.4.2 over current 2.4.3 dv/dt protection 2.4.4 di/dt protection 2.4.4 di/dt protection 2.5 Natural commutation: circuit diagram & working principle 2.6 Forced commutation: circuit diagram & working principle 2.6.1 Type A 2.6.2 Type B 2.6.3 Type C 2.6.4 Type D 2.6.5 Type E Course Outcome: CO2 Teaching Hours : 14 hrs Marks: 14 (R-6, U-6, A-2) Controlled Rectifier 3.1 Single-phase half wave controlled rectifiers with resistive load, inductive load (with a without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2.1 Effect of freewheeling diodes		
 2.2.1 Resistance triggering circuit 2.2.2 R-C triggering circuit 2.3 UJT triggering using pulse transformer 2.3 Series and parallel connection of SCRs 2.3.1 Need for equalizing network 2.3.2 AC and DC equalizing circuits 2.3.3 Definition of String efficiency, Derating. 2.4 Protection circuits: Circuit diagram, working principle. 2.4.1 over voltage 2.4.2 over current 2.4.3 dv/dt protection 2.4.4 di/dt protection 2.4.4 di/dt protection 2.5 Natural commutation: circuit diagram & working principle 2.6 Forced commutation: circuit diagram & working principle 2.6.5 Type B 2.6.5 Type E Course Outcome: CO2 Teaching Hours : 14 hrs Marks: 14 (R-6, U-6, A-2 Controlled Rectifier 3.1 Single-phase half wave controlled rectifiers with resistive load, inductive load (with a without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2.1 Effect of freewheeling diodes		
 2.2.2 R-C triggering circuit 2.3 UJT triggering using pulse transformer 2.3 Series and parallel connection of SCRs 2.3.1 Need for equalizing network 2.3.2 AC and DC equalizing circuits 2.3.3 Definition of String efficiency, Derating. 2.4 Protection circuits: Circuit diagram, working principle. 2.4.1 over voltage 2.4.2 over current 2.4.3 dv/dt protection 2.4.4 di/dt protection 2.5 Natural commutation: circuit diagram & working principle 2.6 Forced commutation: circuit diagram & working principle 2.6.1 Type A 2.6.2 Type B 2.6.3 Type C 2.6.4 Type D 2.6.5 Type E Course Outcome: CO2 Teaching Hours : 14 hrs Marks: 14 (R-6, U-6, A-2 Controlled Rectifier 3.1 Single-phase half wave controlled rectifiers with resistive load, inductive load (with a without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2.1 Effect of freewheeling diodes		
 2.3 UJT triggering using pulse transformer 2.3 Series and parallel connection of SCRs 2.3.1 Need for equalizing network 2.3.2 AC and DC equalizing circuits 2.3.3 Definition of String efficiency, Derating. 2.4 Protection circuits: Circuit diagram, working principle. 2.4.1 over voltage 2.4.2 over current 2.4.3 dv/dt protection 2.4.4 di/dt protection 2.4.4 di/dt protection 2.5 Natural commutation: circuit diagram & working principle 2.6 Forced commutation: circuit diagram & working principle. 2.6.1 Type A 2.6.2 Type B 2.6.3 Type C 2.6.4 Type D 2.6.5 Type E Course Outcome: CO2 Teaching Hours : 14 hrs Marks: 14 (R-6, U-6, A-2 Controlled Rectifier 3.1 Single-phase half wave controlled rectifiers with resistive load, inductive load (with a without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2 Single-phase full wave (bridge configurations) controlled rectifiers with resistive load and inductive load (with and without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2.1 Effect of freewheeling diodes 		
 2.3 Series and parallel connection of SCRs 2.3.1 Need for equalizing network 2.3.2 AC and DC equalizing circuits 2.3.3 Definition of String efficiency, Derating. 2.4 Protection circuits: Circuit diagram, working principle. 2.4.1 over voltage 2.4.2 over current 2.4.3 dv/dt protection 2.4.4 di/dt protection 2.5 Natural commutation: circuit diagram & working principle 2.6 Forced commutation: circuit diagram & working principle 2.6.1 Type A 2.6.2 Type B 2.6.3 Type C 2.6.4 Type D 2.6.5 Type E Course Outcome: CO2 Teaching Hours : 14 hrs Marks: 14 (R-6, U-6, A-2) Controlled Rectifier 3.1 Single-phase half wave controlled rectifiers with resistive load, inductive load (with a without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2 Single-phase full wave (bridge configurations) controlled rectifiers with resistive load and inductive load (with and without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2.1 Effect of freewheeling diodes		
 2.3.1 Need for equalizing network 2.3.2 AC and DC equalizing circuits 2.3.3 Definition of String efficiency, Derating. 2.4 Protection circuits: Circuit diagram, working principle. 2.4.1 over voltage 2.4.2 over current 2.4.3 dv/dt protection 2.4.4 di/dt protection 2.5 Natural commutation: circuit diagram & working principle 2.6 Forced commutation: circuit diagram & working principle 2.6 Forced commutation: circuit diagram & working principle 2.6 Forced commutation: circuit diagram & working principle 2.6.1 Type A 2.6.2 Type B 2.6.3 Type C 2.6.4 Type D 2.6.5 Type E Course Outcome: CO2 Teaching Hours : 14 hrs Marks: 14 (R-6, U-6, A-2 Controlled Rectifier 3.1 Single-phase half wave controlled rectifiers with resistive load, inductive load (with a without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2 Single-phase full wave (bridge configurations) controlled rectifiers with resistive load and inductive load (with and without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2.1 Effect of freewheeling diodes		
 2.3.2 AC and DC equalizing circuits 2.3.3 Definition of String efficiency, Derating. 2.4 Protection circuits: Circuit diagram, working principle. 2.4.1 over voltage 2.4.2 over current 2.4.3 dv/dt protection 2.4.4 di/dt protection 2.5 Natural commutation: circuit diagram & working principle 2.6 Forced commutation: circuit diagram & working principle 2.6 Forced commutation: circuit diagram & working principle 2.6 Forced commutation: circuit diagram & working principle 2.6.1 Type A 2.6.2 Type B 2.6.3 Type C 2.6.4 Type D 2.6.5 Type E Course Outcome: CO2 Teaching Hours : 14 hrs Marks: 14 (R-6, U-6, A-2 Controlled Rectifier 3.1 Single-phase half wave controlled rectifiers with resistive load, inductive load (with a without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2 Single-phase full wave (bridge configurations) controlled rectifiers with resistive load and inductive load (with and without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2.1 Effect of freewheeling diodes		
 2.3.3 Definition of String efficiency, Derating. 2.4 Protection circuits: Circuit diagram, working principle. 2.4.1 over voltage 2.4.2 over current 2.4.3 dv/dt protection 2.4.4 di/dt protection 2.5 Natural commutation: circuit diagram & working principle 2.6 Forced commutation: circuit diagram & working principle 2.6 Forced commutation: circuit diagram & working principle 2.6.1 Type A 2.6.2 Type B 2.6.3 Type C 2.6.4 Type D 2.6.5 Type E Course Outcome: CO2 Teaching Hours : 14 hrs Marks: 14 (R-6, U-6, A-2 Controlled Rectifier 3.1 Single-phase half wave controlled rectifiers with resistive load, inductive load (with a without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2 Single-phase full wave (bridge configurations) controlled rectifiers with resistive load and inductive load (with and without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2.1 Effect of freewheeling diodes		
 2 2.4 Protection circuits: Circuit diagram, working principle. 2.4.1 over voltage 2.4.2 over current 2.4.3 dv/dt protection 2.4.4 di/dt protection 2.5 Natural commutation: circuit diagram & working principle 2.6 Forced commutation: circuit diagram & working principle. 2.6.1 Type A 2.6.2 Type B 2.6.3 Type C 2.6.4 Type D 2.6.5 Type E Course Outcome: CO2 Teaching Hours : 14 hrs Marks: 14 (R-6, U-6, A-2) Controlled Rectifier 3.1 Single-phase half wave controlled rectifiers with resistive load, inductive load (with a without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2.1 Effect of freewheeling diodes		2.3.2 AC and DC equalizing circuits
 2 2.4.1 over voltage 2.4.2 over current 2.4.3 dv/dt protection 2.4.4 di/dt protection 2.5 Natural commutation: circuit diagram & working principle 2.6 Forced commutation: circuit diagram & working principle. 2.6.1 Type A 2.6.2 Type B 2.6.3 Type C 2.6.4 Type D 2.6.5 Type E Course Outcome: CO2 Teaching Hours : 14 hrs Marks: 14 (R-6, U-6, A-2 Controlled Rectifier 3.1 Single-phase half wave controlled rectifiers with resistive load, inductive load (with a without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2 Single-phase full wave (bridge configurations) controlled rectifiers with resistive load and inductive load (with and without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2.1 Effect of freewheeling diodes		2.3.3 Definition of String efficiency, Derating.
 2.4.2 over current 2.4.3 dv/dt protection 2.4.4 di/dt protection 2.5 Natural commutation: circuit diagram & working principle 2.6 Forced commutation: circuit diagram & working principle. 2.6.1 Type A 2.6.2 Type B 2.6.3 Type C 2.6.4 Type D 2.6.5 Type E Course Outcome: CO2 Teaching Hours : 14 hrs Marks: 14 (R-6, U-6, A-2) Controlled Rectifier 3.1 Single-phase half wave controlled rectifiers with resistive load, inductive load (with a without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2 Single-phase full wave (bridge configurations) controlled rectifiers with resistive load and inductive load (with and without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2.1 Effect of freewheeling diodes 		2.4 Protection circuits: Circuit diagram, working principle.
 2.4.2 over current 2.4.3 dv/dt protection 2.4.4 di/dt protection 2.5 Natural commutation: circuit diagram & working principle 2.6 Forced commutation: circuit diagram & working principle. 2.6.1 Type A 2.6.2 Type B 2.6.3 Type C 2.6.4 Type D 2.6.5 Type E Course Outcome: CO2 Teaching Hours : 14 hrs Marks: 14 (R-6, U-6, A-2 Controlled Rectifier 3.1 Single-phase half wave controlled rectifiers with resistive load, inductive load (with a without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2 Single-phase full wave (bridge configurations) controlled rectifiers with resistive load and inductive load (with and without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2.1 Effect of freewheeling diodes	2	2.4.1 over voltage
 2.4.3 dv/dt protection 2.4.4 di/dt protection 2.5 Natural commutation: circuit diagram & working principle 2.6 Forced commutation: circuit diagram & working principle. 2.6.1 Type A 2.6.2 Type B 2.6.3 Type C 2.6.4 Type D 2.6.5 Type E Course Outcome: CO2 Teaching Hours : 14 hrs Marks: 14 (R-6, U-6, A-2 Controlled Rectifier 3.1 Single-phase half wave controlled rectifiers with resistive load, inductive load (with a without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2 Single-phase full wave (bridge configurations) controlled rectifiers with resistive load and inductive load (with and without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2.1 Effect of freewheeling diodes 		2.4.2 over current
 2.4.4 di/dt protection 2.5 Natural commutation: circuit diagram & working principle 2.6 Forced commutation: circuit diagram & working principle. 2.6.1 Type A 2.6.2 Type B 2.6.3 Type C 2.6.4 Type D 2.6.5 Type E Course Outcome: CO2 Teaching Hours : 14 hrs Marks: 14 (R-6, U-6, A-2 Controlled Rectifier 3.1 Single-phase half wave controlled rectifiers with resistive load, inductive load (with a without freewheeling diode): Circuit diagram, working principle, waveforms. 3 3.2 Single-phase full wave (bridge configurations) controlled rectifiers with resistive load and inductive load (with and without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2.1 Effect of freewheeling diodes		
 2.5 Natural commutation: circuit diagram & working principle 2.6 Forced commutation: circuit diagram & working principle. 2.6.1 Type A 2.6.2 Type B 2.6.3 Type C 2.6.4 Type D 2.6.5 Type E Course Outcome: CO2 Teaching Hours : 14 hrs Marks: 14 (R-6, U-6, A-2 Controlled Rectifier 3.1 Single-phase half wave controlled rectifiers with resistive load, inductive load (with a without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2 Single-phase full wave (bridge configurations) controlled rectifiers with resistive load and inductive load (with and without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2.1 Effect of freewheeling diodes		
 2.6 Forced commutation: circuit diagram & working principle. 2.6.1 Type A 2.6.2 Type B 2.6.3 Type C 2.6.4 Type D 2.6.5 Type E Course Outcome: CO2 Teaching Hours : 14 hrs Marks: 14 (R-6, U-6, A-2 Controlled Rectifier 3.1 Single-phase half wave controlled rectifiers with resistive load, inductive load (with a without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2 Single-phase full wave (bridge configurations) controlled rectifiers with resistive load and inductive load (with and without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2.1 Effect of freewheeling diodes		
 2.6.1 Type A 2.6.2 Type B 2.6.3 Type C 2.6.4 Type D 2.6.5 Type E Course Outcome: CO2 Teaching Hours : 14 hrs Marks: 14 (R-6, U-6, A-2 Controlled Rectifier 3.1 Single-phase half wave controlled rectifiers with resistive load, inductive load (with a without freewheeling diode): Circuit diagram, working principle, waveforms. 3 3.2 Single-phase full wave (bridge configurations) controlled rectifiers with resistive load and inductive load (with and without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2.1 Effect of freewheeling diodes		
 2.6.2 Type B 2.6.3 Type C 2.6.4 Type D 2.6.5 Type E Course Outcome: CO2 Teaching Hours : 14 hrs Marks: 14 (R-6, U-6, A-2) Controlled Rectifier 3.1 Single-phase half wave controlled rectifiers with resistive load, inductive load (with a without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2 Single-phase full wave (bridge configurations) controlled rectifiers with resistive load and inductive load (with and without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2.1 Effect of freewheeling diodes		
 2.6.3 Type C 2.6.4 Type D 2.6.5 Type E Course Outcome: CO2 Teaching Hours : 14 hrs Marks: 14 (R-6, U-6, A-2 Controlled Rectifier 3.1 Single-phase half wave controlled rectifiers with resistive load, inductive load (with a without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2 Single-phase full wave (bridge configurations) controlled rectifiers with resistive load and inductive load (with and without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2.1 Effect of freewheeling diodes 		
 2.6.4 Type D 2.6.5 Type E Course Outcome: CO2 Teaching Hours : 14 hrs Marks: 14 (R-6, U-6, A-2 Controlled Rectifier 3.1 Single-phase half wave controlled rectifiers with resistive load, inductive load (with a without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2 Single-phase full wave (bridge configurations) controlled rectifiers with resistive load and inductive load (with and without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2.1 Effect of freewheeling diodes 		
 2.6.5 Type E Course Outcome: CO2 Teaching Hours : 14 hrs Marks: 14 (R-6, U-6, A-2) Controlled Rectifier 3.1 Single-phase half wave controlled rectifiers with resistive load, inductive load (with a without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2 Single-phase full wave (bridge configurations) controlled rectifiers with resistive load and inductive load (with and without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2.1 Effect of freewheeling diodes 		
Course Outcome: CO2 Teaching Hours : 14 hrs Marks: 14 (R-6, U-6, A-2 Controlled Rectifier 3.1 Single-phase half wave controlled rectifiers with resistive load, inductive load (with a without freewheeling diode): Circuit diagram, working principle, waveforms. 3 3.2 Single-phase full wave (bridge configurations) controlled rectifiers with resistive load and inductive load (with and without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2.1 Effect of freewheeling diodes		
 Controlled Rectifier 3.1 Single-phase half wave controlled rectifiers with resistive load, inductive load (with a without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2 Single-phase full wave (bridge configurations) controlled rectifiers with resistive load and inductive load (with and without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2.1 Effect of freewheeling diodes 		2.6.5 Type E
 Controlled Rectifier 3.1 Single-phase half wave controlled rectifiers with resistive load, inductive load (with a without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2 Single-phase full wave (bridge configurations) controlled rectifiers with resistive load and inductive load (with and without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2.1 Effect of freewheeling diodes 		Course Outcome: CO2 Teaching Hours : 14 hrs Marks: 14 (R.6 U.6 A.2)
 3.1 Single-phase half wave controlled rectifiers with resistive load, inductive load (with a without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2 Single-phase full wave (bridge configurations) controlled rectifiers with resistive load and inductive load (with and without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2.1 Effect of freewheeling diodes 		
 3 without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2 Single-phase full wave (bridge configurations) controlled rectifiers with resistive load and inductive load (with and without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2.1 Effect of freewheeling diodes 		
 3.2 Single-phase full wave (bridge configurations) controlled rectifiers with resistive load and inductive load (with and without freewheeling diode): Circuit diagram, working principle, waveforms. 3.2.1 Effect of freewheeling diodes 		
and inductive load (with and without freewheeling diode): Circuit diagram, working principle, waveforms.3.2.1 Effect of freewheeling diodes	2	
principle, waveforms. 3.2.1 Effect of freewheeling diodes	3	
3.2.1 Effect of freewheeling diodes		
3.3 Three-phase half wave controlled rectifier with resistive load: Circuit diagram, working		
		3.3 Three-phase half wave controlled rectifier with resistive load: Circuit diagram, working

	principle, waveforms
	Course Outcome: CO3Teaching Hours : 8 hrs Marks: 8(R-2, U-4, A-2)
4	 Chopper 4.1 Introduction, classification, basic chopper circuit diagram and working. 4.2 Types of chopper: Circuit diagram, working principle and waveforms 4.2.1 Step up chopper (Boost converter) using SCR. 4.2.2 Step down chopper (Buck converter) using SCR. 4.2.3 First quadrant or class A chopper. 4.2.4 Second quadrant or class B chopper. 4.2.5 Two quadrant Type A or class C chopper. 4.2.6 Two quadrant Type B or class D chopper. 4.2.7 Four quadrant chopper or class E chopper. 4.3 Other chopper circuit : circuit diagram and working principle 4.3.1 Buck-Boost converter using MOSFET.
5	Course Outcome: CO4 Teaching Hours : 9 hrs Marks: 10 (R-4, U-4, A-2) Inverter 5.1 Introduction. Classification of inverters according to nature of input source, method of commutation, connection of thyristor and commutating component. 5.2 Types of inverters: Working principle and operation 5.2.1 Series inverter 5.2.2 Parallel inverter 5.3 Single phase SCR bridge Inverter : Circuit diagram , working principle and waveforms 5.3.1 1Ø half bridge inverter 5.3.2 1Ø Full bridge inverter 5.4 McMurray Bedford half Bridge Inverter: Circuit diagram, working principle and waveforms. 5.5 Applications.
6	Course Outcome: CO4Teaching Hours : 8 hrsMarks: 8 (R- 2, U- 4, A-2)Industrial applications of Power Electronic devices6.1 Switched Mode power Supply (SMPS): Classification, Basic SMPS block diagram and working.6.1.1Working of Modified block diagram of SMPS6.1.2Advantages and Disadvantages of SMPS6.2Uninterruptible Power Supply (UPS): Need and block diagram of UPS system.6.3Types of UPS system: Block diagram and operation6.3.1On-line UPS6.3.2Off-line UPS6.3Line interactive UPS6.4Industrial Circuits: Circuit diagram and working principle6.4.1Light dimmer using TRIAC6.4.2Battery charger using SCR

Page 3

Course Outcome: CO5

Teaching Hours: 11 hrs Marks: 10 (R-4, U-6, A-)

Suggested Specifications Table (Theory):

Unit		Distribution of Theory Marks					
No	Topic Title	R Level	U Level	A Level	Total Marks		
1	Power Semiconductor devices	4	4	2	10		
2	SCR Turn ON, Protection circuits and SCR Turn OFF methods	6	6	2	14		
3	Controlled Rectifier	2	4	2	8		
4	Chopper	4	4	2	10		
5	Inverter	2	4	2	8		
6	Industrial applications of Power Electronic devices	4	6	0	10		
	Total	22	28	10	60		

2

List of experiments: Total 12 experiments out of 15 experiments

Sr.	Unit	Cos	Title of the Experiments	Hours
No.	No			
1	1	CO1	A. Verify the V-I characteristics of SCR.	4
			B. Verify the V-I characteristic of TRIAC	
2	2	CO2	Observe firing angle control of SCR using R triggering method.	4
3	3	CO3	Observe the waveform of half wave controlled rectifier for	4
			variable firing angle.	
4	4	CO4	Test waveforms at various points of step up chopper using SCR	4
5	6	CO5	Test light dimmer circuit using TRIAC	4
6	5	CO4	Trace the series inverter circuit and list the major components of	4
			the circuit, sketch the observed waveforms and measure voltage	
			levels.	
7	1	CO1	A. Verify the V-I characteristic of power MOSFET.	4
			B. Verify the V-I characteristic of DIAC.	
8	2	CO2	Observe firing angle control of SCR using RC triggering method.	4
9	3	CO3	Observe the waveform of full wave controlled rectifier for	4
	5	005	variable firing angle	+
10	4	CO4	Test waveforms at various points of step down chopper using SCR	4

		Total		60
	6		application circuit. For example. SCR flasher, Emergency lighting system and/or any circuit from practical list.	
	,4,5,	,3,4,5	tested circuit mounted on it for any Industrial electronics	
15	1,2,3	CO1,2	Mini project: Group of two students should prepare PCB with	4
14	2	CO2	Case study on protection circuit of SCR	4
13	2	CO2	Observe the output waveforms of relaxation oscillator using UJT	4
12	6	CO5	Test Battery charger circuit using SCR	4
11	5	CO4	Trace the parallel inverter circuit and list the major components of the circuit, sketch the observed waveforms and measure voltage levels.	4

Note: Experiments No. 1 to 5, 14 and 15 are compulsory and should map all units and Cos. Remaining experiments are to be performed as per importance of the topic.

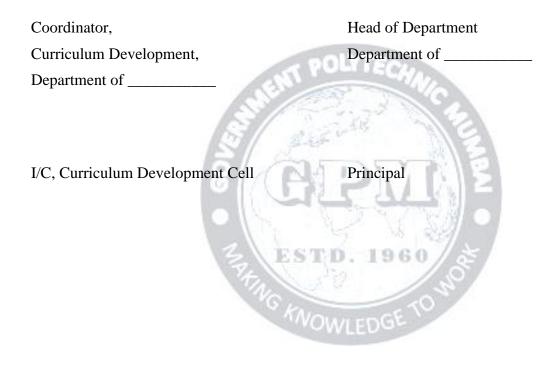
/ Books:

/ Boo	ks:	T POLYTECH	
Sr. No.	Title	Author, Publisher, Edition and Year Of publication	ISBN
1	Power electronics	M. D. Singh & K.B. khanchandani, Mcgraw-hill publishing, 2 nd edition 1998	978-0070583894
2	Industrial & power electronics	Harish rai, umesh publication, 1/e edition 2018	978-9386827869
3	Power electronics	P. S. Bimbhra, Khanna publishers; 5 th edition 1990	978-8174092793
4	Power electronics	Munammad h. Rashid, Pearson Education., 3 nd edition, 2014	978-9332535770

E-References:

1. https://ndl.iitkgp.ac.in/

2. www.scribd.com


- 3. https://nptel.ac.in/courses/
- 4. www.youtube.com

CO Vs PO and CO Vs PSO Mapping

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
C01	2	1	1	3		1	1	2	1	1
CO2	2	1	1	1	1	1	1	2	2	1
CO3	2	1	2	1	1	1	2	2	2	1
CO4	1	1	2	3	2	2	1	2	2	2
CO5	3	3	3	3	3	2	2	3	3	2

Industry Consultation Committee:

Sr. No	Name	Designation	Institute/Organisation
1	Mr. Pankaj Badgujar	Asst. Engineer	Autometer Alliance Ltd.
2	Mrs. M. R. Chavhan	Lecturer	Govt. Polytechnic Vikramgad
3	Ms. A. A. Sangale	Lecturer	Govt. Polytechnic Awasari
4	Mrs. A. M. Ghadge (Curriculum Content Designer)	Lecturer	Govt. Polytechnic Mumbai

Program	nme : D	iploma	in Electr	onics Ei	ngineering	(Sandwich]	Pattern	I)		
Course Code: MG19501				Course Manag		epreneurshi	ip Deve	elopmer	nt And	
Compu	Compulsory / Optional: compulsory									
Teachi	ng Sche	eme and	l Credits			Examinat	tion Sch	neme		
L	Р	TU	Total	TH (1Hrs)	TS1 (30 min)	TS2 (30 min)	PR	OR	TW	Total
3	-	-	3	60@	20@	20@	-	-	-	100

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination

Note: For Minimum passing marks under various heads, refer, examination rule AR 26. Two practical skill tests are to be conducted. First skill test at midterm and second skill test at the end of the term.

Rationale: Diploma pass out students are normally placed at the supervisory level when they go to industries. Where they are expected to handle labour, material and machinery to get the targeted output. This requires knowledge of managing different resources of the organizations effectively. Entrepreneur puts up new projects that create wealth and opens up many employment opportunities. This course deals with different aspects of management, which helps technician to manage the changed environment in the industry.

Course Outcomes: Student should be able to

CO1	Understand the basic concept of entrepreneurial process, scope and various support
	systems to entrepreneur.
CO2	Understand the different levels and process of management.
CO3	Describe forms of ownership, Human Resource Management and industrial safety rules.
CO4	Manage different industrial resources efficiently.
CO5	Apply various rules and regulations concerned with Business.

Course Content Details:

Unit No	Topics / Sub-topics						
	Introduction to Entrepreneurship						
	1.1. Definition of entrepreneurship						
	1.2. Characteristics of entrepreneurship						
1	1.3. Functions of entrepreneurship						
	1.4. Barriers of entrepreneurship						
	1.5. Distinction of entrepreneur and Manager						
	Course Outcome: CO1 Teaching Hours : 5 Marks: 8 (R- 4 U-4, A)						
	Scope and Support Systems						
	2.1. Trading, Consultancy, Franchises, Service Sectors, Emerging Areas						
2	2.2 Small Enterprises						
	2.2.1. Definition, Characteristics & Types						
	2.2.2. Problems Faced by SSI						

Entrepreneurship Development and Management (MG19501) (Approved Copy) (P19 scheme)

	2.2.3. Industrial Sickness- Causes & Corrective Measures					
	2.3. Functions & Supportive Institutes					
	(MSME, SIDBI, DICS, SSIB, NSIC, MITCON, TCO's, MIDC)					
	2.4. Government Agencies					
	Course Outcome:CO1Teaching Hours : 6Marks: 8 (R-2, U-2, A-4)					
	Overview Of Business Management Process					
	3.1 Definition of Business,					
	3.2 Types of Business- Service, Manufacturing & Trades					
2	3.3 Management- Various Definitions					
3	3.4. Levels of Management					
	3.5. Basic Functions of Management- Planning, Organizing, Staffing, Directing & Controlling					
	3.6. Fourteen Principles of Management					
	Course Outcome: CO2 Teaching Hours : 6 Marks: 10 (R-2, U-6, A-2)					
	Organizational and HR Management					
	4.1. Organization- Definition					
	4.2 Forms of Ownership, Proprietorship, Partnership, Joint Stock Company, Co-Operative Society,					
4	Government Sector					
-	4.3 Personnel Management- Definition & Functions.					
	4.4 Financial Management : Objective, functions,					
	Capital generation: Types and Source of capital					
	Course Outcome: CO3 Teaching Hours : 6 Marks: 10 (R- 2, U- 8, A- 0)					
	Industrial Safety and Management					
	5.1. Causes of Accident					
	5.2. Safety Precautions					
5	5.3. Introduction To:					
	5.3.1. Factory Act 1948					
	5.3.2. Workmen Compensation Act					
	5.3.3. Goods And Services Tax					
	Course Outcome: CO3 Teaching Hours : 6 Marks: 8 (R-2, U-4, A-2)					
	Materials Management					
	6.1. Inventory Management: Definition of Inventory and inventory Control. Objectives of Inventory Control					
-	6.2. ABC Analysis, Graphical Representation					
6	6.3. Economic Order Quantity (E.O.Q.)					
	6.3.1. Graphical Representation					
	6.3.2 Calculation of E,O.Q.					
	Course Outcome: CO4 Teaching Hours : 7 Marks: 6 (R , U-4 , A- 2)					
	Project Management					
	7.1. Project Management: Definition And Meaning of Project7.2 Overview of Project Management Methodologies viz. Water Fall, Agile, Hybrid, Critical Path					
	Method, Critical Chain Method, Integrated Project Management, PRISM, PRINCE - 2					
	7.3. Introduction to C.P.M & P.E.R.T, Preparation Of Network, Calculation of Project Duration And					
	Floats					
7	7.4. Concept oF Break Even Analysis					
	7.5. Project Risk and Quality Management: Qualitative and Quantitative Analysis of Risks and					
	Quality, Risk Index Risk Management, Quality Management.					
	7.6 Concept of KAIZEN, 5 "S".					
	7.7 Advantages and Applications of KAIZEN, 5 "S".					
	Course Outcome:CO5Teaching Hours:9Marks:10 (R-2, U-4, A-4)					

 $Page\mathbf{Z}$

Suggested Specifications Table (Theory):

Unit		Distribution of Theory Marks					
No	Topic Title		U Level	A Level	Total Marks		
1	Introduction to entrepreneurship	4	4	-	8		
2	Scope and Support Systems	2	2	4	8		
3	Overview Of Business Management Process	2	6	2	10		
4	Organizational and HR Management	2	8	0	10		
5	Industrial Safety and Management	2	4	2	8		
6	Materials Management	-	4	2	6		
7	Project Management	2	4	4	10		
	Total	14	32	14	60		

References/ Books:

efere	ences/ Books:	STELLE SE	
Sr. No.	Title	Author, Publisher, Edition and Year Of publication	ISBN
1	Industrial Engineering and Management	Dr .O.P. Khanna , Dhanpal Rai & Sons., New Delhi	ISBN: 9788189928353, 9788189928353
2	Industrial Management	Rustom S. Davar, Khanna publication	0800212436, 9780800212438
3	Industrial Management	Jhamb & Bokil , Everest Publication ,Pune.	8176602043 978-8176602044
4	Organization & Management	R. D .Agarwal , Tata M'graw hill	0-07-451596-3

E-References:

1. https://ndl.iitkgp.ac.in/ 3. www.slideshare.net.com 2.www.scribd.com

Entrepreneurship Development and Management (MG19501) (Approved Copy) (P19 scheme)

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
C01	1	2	1	-	1	2	2	1	-	-
CO2	2	2	1	-	2	2	2	1	-	-
CO3	3	3	2	2	1	2	2	1	-	-
CO4	1	2	1	-	1	2	2	1	-	-
CO5	2	3	2	1	2	3	2	1	-	-

CO Vs PO and CO Vs PSO Mapping

Industry Consultation Committee:

Sr. No	Name	Designation	Institute/Organisation
1	Mr. Sandeep Dongare	Director	HCL
2	Ms. Vishakhka Pawar	Lecturer	Govt. Polytechnic, vikramgadh
3	Mr. N.N.Ansari	Lecture	Govt. Polytechnic Mumbai
4	Mrs .A. D. Kalyankar	Lecturer	Govt. Polytechnic Mumbai Electonics Dept.

Coordinator,

Curriculum Development,

Department of Electronics

Head of Department Department of Electronics

I/C, Curriculum Development Cell

Principal

Program	Programme : Diploma in Electronics Engineering (Sandwich Pattern)									
Course	Course Code: SC19112 Course Title: APPLIED MATHEMATICS									
Compul	Compulsory / Optional: Compulsory									
Teachi	ng Sche	me and	Credits			Exam	ination S	Scheme		
TH	PR	TU	Total	TH (2 Hrs 30 Min)TS1 (1 Hr)TS2 (1 Hr)PRORTWTotal				Total		
1		2	3						50	50

Abbreviations: TH- Theory; PR-Practical; TU-Tutorial; TS1 and TS2- Term Tests; OR-Oral Exam; TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal assessment

Note: For Minimum passing marks under various heads, refer, examination rule AR26.

Rationale:

This subject is classified under the foundation courses group and proceeds further to application level of mathematics to teach students the theory,concepts ,principles of applied mathematics and the application, importance and use of mathematics in the analysis of concepts in electronics.

Course Outcomes: Student should be able to

CO1	Solve first order first degree differential equations of various types
CO2	Apply differential equation for solving problems in electronics engineering field.
CO3	Apply laplace transform to solve differential equation of first order with constant coefficients

Course Content Details:

Unit No	Topics / Sub-topics
	1.Differential Equations 1.1 Definition of Differential Equation
1	1.2 Order and Degree of Differential Equation1.3 Formation of Differential equation for function containing single constant
	1.4 Solution of first order first degree differential equation1.4.1 Variable separable

	1.4.2 Equation reducible to variable separable form					
	1.4.3 Homogeneous D.E.					
	1.4.4 Exact D.E.					
	1.4.5 linear D.E.					
	Course Outcome: CO1 Teaching Hours : 06 hrs Marks : 20 (R- 8, U-6, A-6)					
	2.Application of Differential equation					
2	2.1 For solution of simple geometrical cases.					
_	2.2 For solution of simple electrical/electronic circuits: LC ,RC, RLC.					
	Course Outcome: CO2 Teaching Hours : 02 hrs Markey 10 (D. 4. U.2. A. 4.)					
	Course Outcome: CO2 Teaching Hours : 03 hrs Marks: 10 (R-4, U-2, A-4)					
	3. Laplace Transformation					
	3.1 Definition					
	3.2 Laplace transform of elementary functions					
	3.3 Important properties of Laplace Transform					
	3.3.1 Linearity property					
	3.3.2 First shifting property					
	3.3.3 Second shifting property					
	3.3.4.change of scale property					
3	3.4 Important results-multiplication by t^n and division by t (without proof)					
_	3.5 Inverse Laplace Transform					
	3.6 Properties of Inverse Laplace transform					
	3.6.1 Linearity Property					
	3.6.2 First shifting Property					
	3.7 Inverse laplace transform by partial fraction					
	3.8 Application of laplace transform for solving differential equations of first order with					
	costant coefficients					
	Course Outcome: CO3 Teaching Hours : 06 hrs Marks: 20 (R-8, U-6, A-6)					

Suggested Specifications Table (Theory):

Unit	Topic Title		Distribution of Theory Marks					
No			U Level	A Level	Total Marks			
1	Differential Equations	8	6	6	20			
2	Application of Differential equation	4	2	4	10			
3	Laplace Transformation	8	6	6	20			
	Total	20	14	16	50			

References/ Books:

Sr. No.	Title	Author, Publisher, Edition and Year Of publication	ISBN
1	Engineering Mathematics	Ravish R Singh,Mukul Bhatt McGraw Hill	13-9780070146150 10-0070146150
2	Mathematics for Polytechnic Students (Volume I)	H.K.Dass, S.Chand Prakashan	9788121935241
3	Companions to Basic Maths	G.V.Kumbhojkar, Phadke Prakashan	10-B07951HJDQ 13-B07951HJDQ
4	Applied Mathematics	N.Raghvendra Bhatt late, Tata McGraw Hill Publication Shri R Mohan Singh	9789339219567, 9339219562

OLYTEC

E-References:

- 1. www.math-magic.com
- 2. <u>www.Scilab.org/-SCI</u> Lab
- 3. www.mathworks.com/Products/Matlab/-MATLAB
- 4. www.wolfram.com/mathematica/-Mathematica
- 5. https://www.khanaacademy.org/math?gclid=CNqHuabCys4CFdoJaAoddHoPig
- 6. www.dplot.com/-Dplot
- 7. www.allmathcad.com/-Math CAD
- 8. <u>www.easycalculation.com</u>
- 9. https://www.vedantu.com/ncert-solutions/ncert-solutions-class-12-maths
- **10.** MYCBSEGUIDE

ESTD. 1960

CO Vs PO and CO Vs PSO Mapping (ELECTRONICS ENGINEERING)

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	2			1				1	1
CO2	3	2			1				1	1
CO3	3	1			1				1	1

Industry Consultation Committee:

Sr. No	Name	Designation	Institute/Organisation
1	Mr.Venugopal Adep	Technical Delivery Manager	TIAA, Godrej one, 11 Floor South Zone , Eastern Express Hwy , Vikhroli,Mumbai 400079
2	Mr.Santosh Bhandekar	Lecturer in Mathematics	Government Polytechnic, Solapur
3	Mr. A.S.Patil	Lecturer in Mathematics	Government polytechnic Mumbai
4	Mr.V.S.Patil	Lecturer in Mathematics	Government polytechnic Mumbai

Coordinator, Curriculum Development, Department of Sci. & Humanities I/C, Curriculum Development Cell Principal

Program	Programme : Diploma in Electronics Engineering (Sandwich Pattern)									
Course Code: EC19404				Course T	itle: Cor	nputer I	Network			
Compul	Compulsory / Optional: Compulsory									
Teachi	ng Sche	eme and	l Credits			Exa	mination	Scheme		
L	Р	TU	Total	TH (2Hrs 30min)	TS1 (1Hr)	TS2 (1Hr)	PR	OR	TW	Total
3	2	-	5	-	-	-	-	50	50	100

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination

Note: For Minimum passing marks under various heads, refer, examination rule AR26. Two practical skill tests are to be conducted. First skill test at midterm and second skill test at the end of the term.

DOLLERS

Rationale:

This course introduces students to communication networks and concentrates on building a firm foundation of it. Students will study data communication concepts and techniques in layered network architecture (OSI reference model, TCP/IP networking architecture).

This course provides the fundamental knowledge of the various aspects of computer networking.

Course Outcomes: Student should be able to

CO1	Classify the different network types				
CO2	Identify the different types of network topologies and protocols				
CO3	Enumerate the layers of the OSI/ISO model				
CO4	Illustrate different multiplexing and switching techniques				
CO5	Demonstrate the functions of different network components and devices				

Course Content Details:

Unit No	Topics / Sub-topics							
	Introduction to Networks:							
1	 1.1 Brief history: Voice networks to data networks 1.2 Definition of network, Need of data communication Network 1.3 Network Architecture: Workstation, Host, Client, Server 1.4 Basic Network Types: Classification according to area 1.4.1 Local Area Network (LAN) 1.4.2 Wireless LAN (WLAN) 1.4.3 Wide Area Networks (WANs) 1.4.4 Variants (CANs, MANs and PANs) 1.4.5 VPN, MAN, Peer to peer, Client/server 							
	1.5 Networks, Sub networks and Inter-networks							

	1.6 The Internet, Intranets and Extra-nets
	Course Outcome: CO1 Teaching Hours: 09
	Introduction to Transmission Technologies:
2	 2.1 Network Physical Topologies: 2.1.1 Bus 2.1.2 Star 2.1.3 Ring 2.1.4 Mesh 2.1.5 Point-to-point 2.1.6 Point-to-multipoint 2.1.7 Hybrid 2.2 Transmission modes, circuit types and services: 2.2.1 Transmission modes, connection types: Simplex, Half Duplex, Full Duplex 2.2.2 Multidrop circuits 2.2.3 Private lines and Local loops
	Course Outcome: CO2 Teaching Hours: 10
	The Open Systems Interconnection OSI/ISO models:
3	 3.1 Need of OSI/ISO model 3.2 Function of each layer of the OSI model 3.2.1 Layer 1 – Physical, 3.2.2 Layer 2 – Data link, 3.2.3 Layer 3 – Network, 3.2.4 Layer 4 – Transport, 3.2.5 Layer 5 – Session, 3.2.6 Layer 6 – Presentation, 3.2.7 Layer 7 – application
	Course Outcome: CO3 Teaching Hours: 09
4	4.1 Definition of Multiplexing 4.2 Types of multiplexing: FDM, TDM, CDM 4.3 Comparison 4.4 Switching techniques: 4.1.1 Circuit switching 4.4.2 Message switching 4.4.3 Packet switching 4.5 Connector Types: Definition and Specification 4.5.1 RJ-11, RJ-45 4.5.2 BNC 4.6 Wiring Standards:
	4.6.1 Straight-through cable (586A)

	4.6.2 Crossover cable (586B)
	Course Outcome: CO4 Teaching Hours: 8
	Different network Components and devices:
5	 5.1 Network Components: 5.1.1 Repeater 5.1.2 Switch 5.1.3 Router 5.1.3 Router 5.1.4 Hub 5.1.5 Bridge 5.1.6 Gateway 5.1.7 Modem 5.1.8 NIC 5.1.9 Media converters 5.1.10 Wireless access point 5.1.11 Firewall 5.1.12 DHCP server 5.2 Functions of specialized network devices: 5.2.1 Multilayer switch, Content switch. 5.2.3 Load balancer 5.2.4 Multifunction network devices 5.2.5 DNS server 5.2.6 Bandwidth shaper 5.2.7 Proxy server 5.2.8 Channel or data service unit 5.3 Private branch exchange 5.4 Comparison between Routing switching and bridging
	Course Outcome: CO5 Teaching Hours: 09

List of experiments: Total 10 experiments (for 1 turn) out of 15 experiments

Sr.	Unit	COs	Title of the Experiments	Hours		
No.	No					
1	1	CO1	Study of different Networking Tools like Network and Telecom			
			Crimping Tool / LAN Cable Tester / Line Tester.			
2	2	CO2	Identify the different types of network topologies.	02		
3	3	CO3	Familiarize with different Categories of Ethernet: Ethernet, Fast	02		
			Ethernet, Gigabit Ethernet, 10G Ethernet. (Specification and			
			Comparison)			
4	4	CO4	Study different types of network cables.	02		
5	5	CO5	To install devices like Printer / Router /Access Points	02		
6	1	CO1	Implement Basic Network Commands			
7	3	CO2	To configure IP addressing and sub netting concept			
8	2	CO4	To configure LAN network using CAT5/6 cable and RJ 45 jack outlet Crimping	02		

Tota	1			30
			their Network infrastructure and design	
15	3	CO3	Do Case study on any one Network service provider company on	02
14	5	CO5	Make a Mini project by using different Network Components.	02
13	5	CO3	To study sharing network devices (wired or wireless)	02
			including ping, tracert, netsh, ipconfig, and netstat etc.	
12	1	CO2	To study network troubleshooting techniques and commands	
11	4	CO1	To make cross-wired and straight cables using crimping tools	
10	5	CO4	To check connection using ping command and use of IP configuration command	
9	5	CO5	To connect and transfer files between multiple PC's using networking switch	02

Note: Experiments No. 1 to 5, 14 and 15 are compulsory and should map all units and COs, Also experiment number 16 and 17 is compulsory. Remaining experiments are to be performed as per importance of the topic.

References/ Books:

Sr. No.	Title	Year Of publication			
1	Data communication	Behroz Forouzen, Tata Mc Graw Hill. 5 th edition	ISBN13:9780073376226		
2	Computer network	Tanenbaum, Pearson	ISBN13:9788131787571		
3	Data & Computer Communications	William Stallings, Pearson	ISBN13:9789332518865		
4	CCNA reference book	Online			

960

E-References:

- 1. https://ndl.iitkgp.ac.in
- 2. https://www.netacad.com/courses/networking
- 3. https://www.youtube.com

CO vs PO and CO vs PSO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	2	1	3	2	2	1	1	3	3	2
CO2	1	1	2	1	2	2	2	3	2	2
CO3	3	1	0	1	2	2	2	2	3	3
CO4	2	1	1	1	2	2	3	1	3	2
CO5	2	1	2	1	2	3	2	2	2	3

Industry Consultation Committee:

Sr. No	Name	Designation	Institute/Organisation
1	Ms Nikita Dorlikar	Manager	Jetking
2	Ms Khushbu Sathwane	Lecturer in Computer	Govt. Polytechnic, Pune
3	Ms Shweta Sisodiya	Lecturer in Electronics	Govt. Polytechnic, Mumbai
	(Curriculum designer)		

Coordinator, Curriculum Development, Department of Electronics Head of Department Department of Electronics

I/C, Curriculum Development Cell

Principal

Computer Network (EC19404)

Programme : Diploma in Electronics Engineering (Sandwich Pattern)										
Course	Course Code: EC19405 Course Title: Fiber Optic Communication									
Compulsory / Optional: Optional										
Teaching Scheme and Credits Examination Scheme										
L	Р	TU	Total	TH (2Hrs 30 min)	TS1 (1Hr)	TS2 (1Hr)	PR	OR	TW	Total
4	2	-	6	60	20	20	50*	-	25	175

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 and TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination

Note: For Minimum passing marks under various heads, refer, examination rule AR 26. Two practical skill tests are to be conducted. First skill test at midterm and second skill test at the end of the term.

POLYTECH

Rationale:

Optical fiber based communication networks have become major information transmission system with high capacity links encircling the globe in both terrestrial and under-sea installation. Numerous passive and active optical devices within these links perform complex transmission and networking functions in the optical domain such as signal amplification, restoration, multiplexing, switching and routing etc. Knowledge of optical fiber technology is helpful in understanding of optical communication system, optical sources and detectors, various losses, optical links and related components.

Course Outcomes: Student should be able to:

CO1	Classify different types of Optical Fibres, its structure and components.
CO2	Describe and use different splicing techniques and connectors.
CO3	Understand different losses and attenuation in fiber optics.
CO4	Describe various sources and detectors used in FOC.
CO5	Explain multiplexing techniques in fiber optics.

Course Content Details:

Unit No	Topics / Sub-topics
	Theory of Optics and Fundamentals of Optical Fiber
	1.1 Optical spectrum: Band name and its range
	1.2 Fiber optics communication
	1.2.1 Introduction
1	1.2.2 Advantages and disadvantages
1	1.2.3 Applications
	1.3 Block diagram and working of Fiber Optic communication system.
	1.4 Definition and concept of reflection, refraction, dispersion,
	diffraction, absorption and scattering with the help of light theory.
	1.5 Ray theory transmission: Total internal reflection, Definition of critical angle,

	Course Outcome: CO1	Teaching Hours: 10	Marks: 08 (R- 4, U-4, A-)
2		ex x ndex fiber d Function s	-
	Course Outcome: CO1 Signal Degradation in Optic	Teaching Hours :10	Marks:08 (R-2, U-4, A-2)
	3.1 Losses	raph of standard fiber and its in	terpretation
3	 3.1.3 Scattering mechanism 3.1.4 Bending losses and it 3.1.5 Core and cladding loss 3.2 Signal Distortion in optical 	n s types sses. l wave guides: Various dispersi icepts, bandwidth-distance proc	on mechanisms, uct concept, cut off wavelength. Marks:10 (R- 4, U- 6, A-)
3	 3.1.3 Scattering mechanism 3.1.4 Bending losses and it 3.1.5 Core and cladding losses 3.2 Signal Distortion in optical group and phase delay cor Course Outcome: CO3 Optical Sources and Detector 4.1 Concept of absorption, spe 4.2 Concept of Heterojunction 4.2 LED: Diagram and workin 4.2.1 Surface emitter LED 4.2.2 Edge emitter LED 4.3 Laser Diodes: Diagram an 4.3.1 Fabry - Parot resonat 4.3.2 Distributed feedback 4.3.3 Advantages of Laser 	n s types sses. l wave guides: Various dispersi- acepts, bandwidth-distance proc Teaching Hours : 08 Teaching Hours : 08 ors ontaneous emission and stimula a structure, concept of quantum ag principle d working principle for resonator (DBF)	uct concept, cut off wavelength. Marks:10 (R- 4, U- 6, A-) ted emission. efficiency.
	 3.1.3 Scattering mechanism 3.1.4 Bending losses and it 3.1.5 Core and cladding losses 3.2 Signal Distortion in optical group and phase delay cor Course Outcome: CO3 Optical Sources and Detector 4.1 Concept of absorption, specific delay context of the start of the sta	n s types sses. l wave guides: Various dispersi- acepts, bandwidth-distance prod Teaching Hours : 08 Teaching Hours : 08 ors ontaneous emission and stimula a structure, concept of quantum as principle d working principle for resonator (DBF)	Marks:10 (R- 4, U- 6, A-) ted emission. efficiency.

	5.5.3 Elastic tube splicing method								
	5.4 Fiber connectors: Requirements of a good connector design, Types and Applications.								
	5.5 Attenuation measurements: OTDR block diagram and working principle.								
	Course Outcome: CO2 Teaching Hours :10 Marks: 10 (R- 2, U- 6, A- 2)								
	Multiplexing in Fiber Optic Communication								
	6.1 Introduction to SONET and SDH.								
	6.1.1 SONET/SDH Rings: Diagram and working principle of								
	i. Two fiber UPSR ii. Two fiber BLSR								
	6.2 Wavelength Division Multiplexing.								
	6.2.1 Definition and Necessity of WDM.								
6	6.2.2 Advantages of WDM.								
6	6.2.3 Block diagram and operational principles of WDM.								
	6.3 DWDM deployment of multiple wavelengths: Block diagram and working principle.								
	6.4 Link Power Budget: Block diagram of optical power loss model, explanation								
	and formulas used.								
	6.6 Introduction to FTTH and (GPON) Gigabit passive optical network								
	Course Outcome: CO5 Teaching Hours :10 Marks: 12 (R- 4, U- 6, A-2)								
	Course Outcome. COS reaching nours .10 Marks. 12 (K-4, U-0, A-2)								

Suggested Specifications Table (Theory):

Unit	El sit was	Distribution of Theory Marks					
No	Topic Title	R Level	U Level	A Level	Total Marks		
1	Theory of optics and fundamentals of optical fiber	4	4	-	08		
2	Optical fiber structure and components	2	4	2	08		
3	Signal Degradation in Optical Fibers	4	6	-	10		
4	Optical Sources and Detectors	4	6	2	12		
5	Power Launching and Coupling	2	6	2	10		
6	Multiplexing in Fiber Optic communication	4	6	2	12		
	Total	20	32	08	60		

List of experiments: Total 10 experiments (or turns) out of 15 experiments (or turns)

Sr. No.	Unit No	COs	Title of the Experiments	Hours
1	1	CO1	Setting Up of Fiber optic Analog link.	2
2	2	CO1	Setting Up of Fiber optic Digital link.	2
3	3	CO3	Measurement of NA of optical fiber.	2
4	4	CO4	Plot the characteristics of Fiber optic LED.	2

5	5	CO2	Joining of optical Fibers using different splicing techniques.	
3	5	02	Joining of optical Floers using different splicing techniques.	2
6	6	CO5	Perform Wavelength Division Multiplexing and Demultiplexing in optical fiber.	2
7	5	CO2	Measure the length of fiber spool using OTDR.	2
8	5	CO2	Calculate the splice loss and measure the length of fiber by using two fiber spool and OTDR.	2
9	5	CO2	Observe loss in LC/PC adapter and measure the length of fiber using spool and OTDR.	2
10	5	CO2	Observe attenuation and measure the length of fiber using spool and OTDR.	2
11	5	CO2	Plot the characteristics of Fiber optic Photo detector.	2
12	3	C03	Measurement of Bending Losses.	2
13	5	CO2	Mini project on simple optical transmitter and receiver or mechanical splicing optical connectors. (preparation and execution of actual mini project)	2
14	5	CO2	Mini project on simple optical transmitter and receiver or mechanical splicing optical connectors. (report writing)	2
15	1,2,3, 4,5,6	CO1, CO2, CO3, CO4, CO5	Case study on FTTH in any one locality in Mumbai	2
		Total	O AND THE S	30

Note: Experiments No. 1 to 5 and 13 to 15 are compulsory and should map all units and CO. Remaining experiments are to be performed as per importance of the topic.

ESTD. 1960

References/ Books:

Sr. No.	Title	Author, Publisher, Edition and Year Of publication	ISBN
1	Optical Fiber Communication	Gerd Keiser, Tata McGraw Hill	978125906876
2	Optical Network	Kumar Shiv Rajan, Morgan Kaufmann	978-0-12-374092-2
3	Optical Fiber Communication	John M Senior, Prentice Hall	81-203-0882-4
4	Gigabit passive optical network (GPON)	Srinath Srivatsa	978-1-4302-4873-6

E-References:

- 1. http://www.bbcmag.com/2008issues/june08/BBP June08 OtoL.pdf
- 2. <u>http://www1.futureelectronics.com/doc/EVERLIGHT%C2%A0/334-15 T1C1-4WYA.pdf</u>
- 3. For virtual lab : http://vlab.co.in

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	1	1	1	1	1	2	1		
CO2	2	1	3	3	1	3	2	3	3	2
CO3	2	3	3	3	1	1	2	3	3	2
CO4	3	2	1	2	1	1	2	3	3	
CO5	2	1	3	3	1 001/	1	2	3	2	2

CO Vs PO and CO Vs PSO Mapping

Industry Consultation Committee:

Sr. No	Name	Designation	Institute/Organisation
1	Mr Kiran Raghawan	Project Manager	Tejas Industry, Mumbai
2	Dr G.G.Sarate	HOD, Electronics	G.P. Amravati
3	Mrs S.V.Bannore (Curriculum Content Designer)	Sr.Lecturer	Govt. Polytechnic Mumbai

Coordinator,

Curriculum Development,

Head of Department	
Department of	

Department of _____

I/C, Curriculum Development Cell

Principal

Programme : Diploma in Electronics Engineering (Sandwich Pattern)										
Course Code: EC19406			6	Course Title	e: Mobile	e Commu	nication			
Compul	Compulsory / Optional: Optional									
Teachi	ng Sche	me and	Credits	Examination Scheme						
L	Р	TU	Total	TH (2Hrs 30Min)	TS1 (1 Hr)	TS2 (1Hr)	PR	OR	TW	Total
4	2	-	6	60	20	20	50*	-	25	175

Abbreviations: L- Theory Lecture, P-Practical, TU-Tutorial, TH- Theory Paper TS1 & TS2- Term Tests, PR-Practical, OR-Oral, TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal practical skill test, # indicates Self, on- line learning Mode, @ indicates on line examination **Note**: For Minimum passing marks under various heads, refer, examination rule AR 26. Two practical skill tesst are to be conducted. First skill test at midterm and second skill test at the end of the term

Rationale:

The 21st century has brought the rapid growth of cell phones, LAN and wireless appliances. Wireless communication is driving the whole world towards greater integrity. RF spectrum in higher bands is available for mobile communications. Mobility awareness in civilized societies, global standardization of wireless devices and products are leading towards huge growth. Students will know the fundamentals of mobile communication, basics of cellular system and different services provided by the cellular system. This subject gives the knowledge of cellular system architecture, components and its application along with its standards. It is the application of wireless digital communication.

Course Outcomes: Student should be able to

CO1	Describe different mobile communication system and their Antennas.
CO2	Understand Hand off strategies, Interference, coverage and capacity in cellular system.
CO3	Illustrate call flow sequences in GSM.
CO4	Comprehend the concept of CDMA (IS-95) standards, SS7 services and IMT 2000.

"OWLEDG

Course Content Details:

Unit No	Topics / Sub-topics						
	Introduction to wireless com	munication system:					
	1.1 Working Principle of Wire	less Communication.					
	1.2 Evolution of mobile radio communications (2G, 2.5G, 3G and 4G)						
	1.3 Introduction of Mobile radio system around the world. (Such as AMPS, N- AMPS, IS-						
1	GSM).						
1	 1.4 Applications of wireless communication systems such as paging system, cordless tele system, cellular telephone system. 1.5 Call processing in cellular telephone system. 						
	Course Outcome: CO1	Teaching Hours:10	Marks:10 (R- 4, U-4, A-2)				

	Mobile unit:						
	2.1 Block Diagram and operation of mobile unit.						
	2.2 Block Diagram and Explanation of frequency synthesizer, transmitter, receiver, logic						
2	unit, control unit.						
	2.3 Essential features of handset.						
	2.4 Definition of mobile base station, Mobile control station.						
	Course Outcome: CO1 Teaching Hours:06 Marks:08 (R-4, U- 4, A)						
	The cellular concept:						
	3.1 Introduction of cellular system.						
	3.1.1 Frequency reuse concept.						
	3.1.2 Introduction of SDMA						
	3.1.3 Hand off strategies and their Types.						
	3.2 Interference and system capacity.						
	3.2.1 Co channel interference and system capacity						
3	3.2.2 Channel planning for wireless system.						
5	3.2.3 Adjacent channel Interference						
	3.3 Improving coverage and capacity in cellular system.						
	3.3.1 Cell splitting						
	3.3.2 Sectoring 3.3.3 Repeater for range extension						
	3.3.4 Micro cell zone concept						
	5.5.4 Where cent zone concept						
	Course Outcome: CO2 Teaching Hours:14 Marks:14 (R-6, U-6, A-2)						
	Cell-Site Antennas and Mobile Antenna:						
	4.1 Equivalent circuit of Antenna.						
	4.2 The Gain-and-Pattern relationship.						
4	4.3 Sum-and-Difference Pattern.						
-	4.4 Antenna at Cell site.4.5 Unique Situations of Cell-Site.						
	4.5 Onique Situations of Cen-Site.						
	4.0 Woone Antennas.						
	Course Outcome: CO1 Teaching Hours:10 Marks:08 (R-4, U-4, A)						
	Digital cellular mobile systems:						
	5.1 G.S.M:						
	5.1.1 GSM Standardization and service aspects						
	5.1.2 GSM Architecture						
	5.1.3 G.S.M Radio Aspects						
5	5.1.4 Security Aspects						
-	5.1.5 Typical call flow sequences in GSM						
	5.2 Signal system no.7 (SS7): services and performance.						
	5.3 IS-95: Concept of IS 95, the North American CDMA Digital Cellular standard. [08]5.3.1 Introduction						
	5.3.2 Service Aspects5.3.3 Network reference Model and Security aspects						
	5.3.4 Radio aspects						
	5.5.4 Radio aspects						

	5.3.5 Key features of IS 95	CDMA systems					
	Course Outcome: CO3 and	CO4 Teaching Hours:12	Marks:14 (R-8 , U-6, A)				
	Modern wireless communicat	ion system and Networks:					
	6.1 State features of 3G wireless networks- UMTS, CDMA 2000.						
	6.2 WLL(Wireless local loop) and LMDS (local multipoint distribution) technology						
	6.3 IMT 2000:						
6	6.3.1 IMT 2000 Vision and Evolution Aspects.						
	6.3.2 Radio Spectrum for IN	MT -2000.					
	Course Outcome: CO4	Teaching Hours:08	Marks:06 (R-2, U-2, A-2)				

Suggested Specifications Table (Theory):

Unit		Distribution of Theory Marks					
No	Topic Title POLITECO	R Level	U Level	A Level	Total Marks		
1	Introduction to wireless communication system	4	4	2	10		
2	Mobile unit	4	4	-	08		
3	The cellular concept	6	6	2	14		
4	Cell-Site Antennas and Mobile Antenna	4	4	-	08		
5	Digital cellular mobile systems	8	6	-	14		
6	Modern wireless communication system and Networks	2	2	2	06		
	Total	28	26	06	60		

TO TNOWLEDGE TO

List of experiments: Total 10 experiments out of 15 experiments

Sr. No.	Unit No	COs	Title of the Experiments	Hours
1	1	CO1	Perform installation of mobile phone.	02
2	1	CO2	Observe Input / Output signal of different sections Mobile unit.	02
3	2	CO3	Read the content of SIM card.	02
4	2	CO4	To understand and perform charging of handset.	02
5	2	CO2	Testing of mobile handset.	02
6	2	CO2	Find out different add- on accessories for cell phones (battery, charger, hands free data cable)	02
7	2	CO3	Identify different sections and component of mobile unit (Ringer section, dialer section, receiver section, transmitter section etc.)	02
8	2	CO3	To Trace different sections of Mobile Unit.	02

Page **3**

9	3	CO3	Demonstration of handoff, frequency response, cell splitting.	02
10	3	CO3	Prepare report on different facilities provided by cellular company (visit)	02
11	3	CO3	Prepare report on cellophane operator companies and their plan and traffic. (Visit)	02
12	5	CO3	Prepare report on GSM technology, its network, GSM capability & data Services.	02
13			Case study: features, services provided by different companies	02
14			Mini Project: Electronic notice board using GSM, Vehicle tracking system, Home security system etc. Note: Only software or program required (No need of Hardware)	04
Total		Total		30

Note: Experiments No. 1 to 5 (or 6) are compulsory and should map all units and COs. Remaining experiments are to be performed depending on the importance of topic.

Sr. No.	Title	Author, Publisher, Edition and Year Of publication	ISBN
1	Wireless Communication Principles & Practice	T.S. Rappaport, Pearson Education	978-0130422323
2	Mobile communication System	William Lee, Tata McGraw Hill	9780070370395
3	Mobile Computing	Asoke Talukder, Roopa Yavagal, Tata McGraw Hill	9780070588073
4	Mobile Communication	Jochen Schiller, Pearson Education Asia	9780201398366
5	Mobile and Personal Communication Systems and Services	Raj Pandya, IEEE Press, PHI	0471660965, 9780471660965
6	Mobile wireless Networks	C K Toh Ad Voc, Pearson Education	9780130078179

E-References:

- 1. https://ndl.iitkgp.ac.in/
- 2. https://www.electronicshub.org/
- 3. https://www.tnuda.org.il/
- 4. www.youtube.com

CO Vs PO and CO Vs PSO Mapping

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	2	1	2	-	1	1	2	1	2	-
CO2	2	2	2	-	1	1	2	1	2	2
CO3	3	1	1	1	1	-	2	1	2	2
CO4	2	1	1	-	1	1	2	-	2	-

Page4

Industry Consultation Committee:

Sr. No	Name	Designation	Institute/Organisation
1	Mrs. Salunke Suvarna	Sr. Controls Engineer	Vanderlande Industries Software Pvt Ltd.Pune
2	Mrs. Chavhan Monali	Lecturer in Electronics	Government Polytechnic, Vikramgadh
3	Mrs. Puri Sanyogeeta B.	Lecturer in Electronics	Govt. Polytechnic Mumbai

	POLYTECH
Coordinator,	Head of Department
Curriculum Development,	Department of
Department of	BENI)
I/C, Curriculum Development Cell	STD Principal
1	NOWLEDGE

